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Abstract: In this paper, we extend the model of Blower et al. [1] by incorporating certain infection terms such as vaccinated 

individuals, treatment rate, waning rate and efficacy rate. A bifurcation analysis is performed on the vaccination model by 

applying a bifurcation method based on the use of center manifold theory. We determine threshold values and derive sufficient 

conditions for both forward and backward bifurcations. Numerical simulations were carried out and bifurcation diagrams are 

presented as supporting evidences of our analytical results. The obtained results show the possibility of occurrence of forward 

and backward bifurcations even when the basic reproduction number is less than one so that it is now possible for the disease to 

exist. These results suggest the need for more study on the qualitative biological mechanisms responsible for backward 

bifurcation. 
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1. Introduction 

In analysing disease transmission models, studies have 

shown the existence of forward and backward bifurcations in 

such models. In a forward bifurcation scenario, as ��increases 

through one, a stable disease-free equilibrium loses its stability 

and a stable endemic equilibrium appears. The behaviour of the 

bifurcation curve is such that as we travel along it from the 

bifurcation point, the level of infection increases as ��increases. 

Many epidemic models that exhibit forward bifurcation can be 

found in the literature [2]. The phenomenon of backward 

bifurcation is characterised by multiple endemic equilibria due 

to the decrease in �� as the level of infection increases. In other 

words, a stable disease-free equilibrium coexists with one or 

more stable endemic equilibria for �� � 1. This pattern has 

been noted in numerous models like multi-group models [3], 

immunity models [4], vaccination models [5], core group 

models [6] and treatment models [7]. 

Over the last decade, several papers have appeared dealing 

with a wide range of models that have the potential for 

exhibiting forward and backward bifurcations. 

The model by Sharomi et al [8] studied the presence of 

backward bifurcation in some HIV vaccination models with 

standard incidence function. The authors noted that 

vaccine-induced backward bifurcation in some HIV models 

with standard incidence can be removed by using mass action 

incidence. As a result, the presence or absence of standard 

incidence may be crucial to the presence or absence of 

backward bifurcation in HIV vaccination models. 

In [9], the existence of backward bifurcation in a discrete SIS 

model with vaccination was investigated. It was found that 

backward bifurcation may occur if the lumped parameter ���� 	 1. The disease can persist for ���� 
 1 and can be 

eradicated for ���� � 1  if a forward bifurcation occurs at ���� 
 1 . However, the disease may persist even when ���� � 1 if a backward bifurcation occurs at ���� 	 1. 

Greenhalgh and Griffiths [4] discussed the phenomenon of 

backward bifurcation in a three-stage model for Bovine 

Respiratory Syncytial Virus (BRSV) in cattle. It was shown that 

the 3-stage model undergoes backward bifurcation for small �, 

where � is the common per capital birth and death rate. Several 

bifurcation diagrams are obtained by fixing some of the 

parameter values for BRSV while varying the others. 

The existence of backward bifurcation in the West Nile Virus 

(WNV) compartmental models has been investigated in [10]. In 
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their analysis, the authors found that it is the higher mortality 

rate of the host birds due to WNV infection that determines the 

occurrence of backward bifurcation. 

Buonomo and Lacitignola [5] stressed the importance of a 

nonlinear incidence rate and an imperfect vaccine in the 

occurrence of backward bifurcation. A bifurcation analysis of 

the model shows the conditions ensuring the presence of either 

forward or backward bifurcation. 

In [11], a deterministic model of TB without and with 

seasonality was developed. The objective of the authors was to 

study the presence of backward bifurcation in the model. They 

observed the existence of backward bifurcation when the basic 

reproduction number is less than unity. The authors concluded 

that the backward bifurcation scenario is caused by the 

re-infection of latently infected individuals with the TB disease. 

Li and Cui [12] investigated the behaviour of a discrete-time 

SIS model with nonlinear incidence rate. The theoretical 

analysis and numerical simulations of the model demonstrated 

that the model exhibits a variety of dynamical behaviours such 

as backward bifurcation, hopf bifurcation, flip bifurcation and 

chaos. 

2. Extension and Modification of Blower 

Model 

In 1995, Blower et al proposed a model of TB infection 

dynamics consisting of three disease states namely 

susceptibles(
), latently infected (�) and infected (�) . The 

model is given by the following set of 1st-order differential 

equations 


� 	 � − ��
 − �
              (2.1) 

�� 	 (1 − �)��
 − (� + �)�      (2.2) 

�� = ���
 + �� + (� + ��)�      (2.3) 

where �	= natural death rate �	= recruitment rate of susceptible individuals ��	= death rate due to TB �	= rate of slow progression �	= rate of fast progression �	= transmission rate. 

The authors perform a qualitative analysis on the model and 

one of their main results is that the disease-free equilibrium 

(DFE) is globally asymptotically stable if �� < 1 while the 

endemic equilibrium is unstable when �� > 1 . However, 

disease control measures such as vaccination and certain 

infection terms that play vital role in TB dynamics was not 

included in the system and consequently bifurcation analysis 

was not discussed. For this reason, we extend the model in [1] 

to include infection parameters such as vaccination (�) , 

waning rate (�), treatment rate (�), proportion of recruitment 

due to immigration (�) , proportion of immigrants that are 

vaccinated (�) and efficacy rate of vaccine ( !,  #). 
The proposed vaccination model is given by 


� = (1 − �)(1 − �)� + �� − ��
 − �
      (2.4) 

�� = �$1—�&� − �� − (1 −  !)��� − ��   (2.5) 

�� = ���
 + �(1 −  !)(1 −  #)��� + (� + �� + �)�  (2.6) 

All the parameters are positive constants with the following 

interpretations 
, �, � denotes the compartments of susceptible, 

vaccinated and infected individualsrespectively. � denotes treatment rate � denotes rate of waning of vaccine � denotes proportion of recruitment due to immigration � denotes proportion of immigrants that are vaccinated  ! denotes efficacy rate of vaccine in protecting against 

initial infection  # denotes efficacy rate of vaccine in slowing down 

progression to active TB 

All other parameters are as defined in [1]. 

The vaccination model (2.4) - (2.6) shall be investigated for 

existence of forward and backward bifurcations. We derive 

conditions, in terms of the parameters of the model that ensure 

that either forward or backward bifurcation occurs. We apply 

bifurcation method introduced in [13] which is based on the use 

of center-manifold theory. In addition, we present a detailed 

numerical verification of the results obtained for both forward 

and backward bifurcations. Bifurcation diagrams are presented 

as supporting evidences of our analytical results. 

3. Equilibrium Points and Local Stability 

Model (2.4) - (2.6) has a disease-free equilibrium '� =(
, �, �) given by 

'� = ((!)*)(!)+),-
+(!)*),
-./ , 01        (3.1) 

The endemic equilibrium point '∗ = (
∗, �∗, �∗) is such 

that 


∗ = +,3(!)45)(!)46)(!)*)/.$!—45&(7)-)(!)87)            (3.2) 

�∗ = +(!)*)(!)87),
/.(!)45)7)9                  (3.3) 

�∗ = +,-(!)45)(!)46))(!)*)(!)+),(!)87)(/.7)8)-)       (3.4) 

Using the technique developed in [14] for calculating ��, the �� for the vaccination model (2.4) - (2.6) was calculated as 

�� = 7:(!)+)./;,(!)45)(!)46)-(-./)(-.8)          (3.5) 

Now, we focus on the disease-free equilibrium '�  and 

investigate the occurrence of transcritical bifurcation at �� = 1. 
The Jacobian matrix of (2.4) - (2.6) evaluated at the 

disease-free equilibrium '� is given by 

<('�) =
=>
>>
? −� 0	 �
0 −� − � −(1 −  !)�

0 	0 � + �� + � @A
AA
B
     (3.6) 
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so that the eigenvalues C  are real and given by C! =−�, C# = −(� + �), CD = � + �� + � .At the bifurcation �� = 1, we have 

�� = 1	 ⇔ � = �∗ = 7:-(!)+)./;,(!)45)(!)46))-(-./)-(-./)   (3.7) 

It follows then that the disease-free equilibrium '�  is 

locally stable when � < �∗	whereas it looses its stability when � > �∗	. 
4. Bifurcation Analysis 

We will make use of Theorem A in [13] for the bifurcation 

analysis of the model system (2.4) - (2.6). The theorem 

prescribes the role of the coefficients F and � of the normal 

form representing the system dynamics on the center manifold 

in decending the direction of the transcritical bifurcation 

occurring at G = 0. More precisely, if F < 0and � > 0, then 

the bifurcation is forward, if F > 0  and � > 0 , then the 

bifurcation is backward. 

Let us consider a general system of ODE's with a parameter G: 

H =  (H, G),  : �+ × � → �+ ,  ∈ 	M#(�+ × �)  (B1) 

Without loss of generality, we assume that H = 0  is an 

equilibrium for (N1) 
Theorem 1[13] 

Assume 

(I) ' = OP (0,0) is the linearization matrix of system 

(B1) around the equilibrium H = 0 with G evaluated 

at 0. Zero is a simple eigenvalue of ' and all other 

eigenvalues of ' have negative real parts; 

(II) Matrix ' has a (nonnegative) right eigenvector Q and 

a left eigenvector �  corresponding to the zero 

eigenvalues. 

(III) Let  R denotes the STU component of   and 

F = ∑ �R , QWQX Y64ZYP[YP\ (0,0), � = ∑ �R , QW Y64ZYP[Y] (0,0),+R,W^!+R,�,X^!                     (4.1) 

Then the local dynamics of system (N1) around H = 0 are 

totally determined by Fand �. 

(i) F > 0, � > 0 . When G < 0  with |G| ≪ 1, H = 0  is 

locally asymptotically stable and there exists a positive 

unstable equilibrium 0 < G ≪ 1, H = 0 is unstable and 

there exists a negative and locally asymptotically stable 

equilibrium; 

(ii) F < 0, � < 0.	When G < 0 , with |G| ≪ 1, H = 0  is 

unstable; when 0 < G ≪ 1, H = 0  is locally 

asymptotically stable and there exists a positive unstable 

equilibrium; 

(iii) F > 0, � < 0.	 When G < 0  with |G| ≪ 1, H = 0	 is 

unstable and there exists a locally asymptotically stable 

negative equilibrium; when 0 < G ≪ 1, H = 0 is stable 

and a positive unstable equilibrium appears; 

(iv) F < 0, � > 0 When G  changes from negative to 

positive, x=0 changes its stability from stable to 

unstable. 

Correspondingly, a negative unstable equilibrium becomes 

positive and locally asymptotically stable. 

Now, we investigate the nature of the bifurcation involving 

the disease-free equilibrium '� at �� = 1.	We apply Theorem 

1 to show that model system (2.4) - (2.6) may exhibit a 

backward bifurcation when � = �∗. 
We now consider the Jacobian matrix <('�, �∗) written as 

<('�, �∗) =
=>
>>
>>
? −� 	0 7:-(!)+)./;(!)45)(!)46))--(-./)

	0 	−� − � 	−(1 −  !)�
−� 	0 a7:-(!)+)./;(!)45)(!)46))-b-(-./) c@A

AA
AA
B
  (4.2) 

Here, the eigenvalues of the above matrix are given by: 

C! = −�;	C# = −� − �;	CD = 0. 

Thus, CD = 0  is a simple zero eigenvalue and the other 

eigenvalues are real and negative. Hence, when �� = 1 (or 

equivalently � = �∗) , the DFE '�  is a nonhyperbolic 

equilibrium and the assumption (B1) of Theorem A is thus 

verified. 

We denote by Q = (Q!, Q#, QD)�  a right eigenvector 

associated with the zero eigenvalue CD = 0.Then, it follows 

that 

−�Q! + e7:-(!)+)./;(!)45)(!)46)-(-./) − �fQD = 0
(−� − �)Q# − (1 −  !)�QD = 0	

e7:-(!)+)./;(!)45)(!)46)-(-./) + ��fQD = 0	 ghh
i
hhj

  (4.3) 

Solving eqn (4.3) for Q!, Q#, QD, we obtain 

Q = (−� − �, (!)45)7-6(-./)7:-(!)+)./;(!)45)(!)46))-(-./) ,	11
�
  (4.4) 

We now consider the left eigenvector � = (�!, �#, �D)� 

satisfying �. Q = 0: 
−��! = 0	

(−� − �)�# = 0	
−(1 −  !)��# − :�k-(-./);-b.�6(!)45)(!)46)-(-./) + �� = 0gh

i
hj

 (4.5) 

By solving (4.5), we have�! = �# = 0 and with �D = 1, 
the left eigenvector �is thus given by 

� = (0, 0, 1)�                 (4.6) 

We now compute the coefficient F  and �  defined in 

Theorem A.Taking into account system (2.4) - (2.6) and 
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considering only the nonzero components of the left 

eigenvector �, then from (4.1) we have 

 

F = �DQ!#
l# Dl
# ('�	, �∗) � 2�DQ!Q#

l# Dl
l� ('�, �∗) � 2�DQ!QD
l# Dl
l� ('�, �∗)��DQ##

l# Dl�# ('�, �∗) � 

2�DQ#QD Y64k
YnYo ('�, �∗)��DQD# Y64k

Yo6 ('�, �∗)                            (4.7) 

and 

� 	 �DQ! Y64k
YnY8 ('�, �∗) � �DQ# Y64k

YnY8 ('�, �∗) � �DQD Y64k
YoY8 ('�	, �∗)                    (4.8) 

where 

 ! 	 (1 − �)(1 − �)� � �� − ��
 − �

 # 	 �(1 − �)� − �� − (1 −  !)��� − �


 D 	 ���
 � �(1 −  !)(1 −  #)��� � (� � �� � �)�gh
i
hj

  (4.9) 

By substituting (4.4), (4.6) and (4.9) into (4.7)-(4.8), we get 

F 	 −2��(� � �)F�, � 	 7:-(!)+)./;,(!)45)(!)46)
-(-./)   (4.10) 

where 

F� 	 !)-(!)45)6(!)46)67-6
7:(!)+)./;(!)45)(!)46))-(-./)        (4.11) 

Since the coefficient � is always positive, it is the sign of the 

coefficient F  and consequently the sign of the quantity F� 

which determines the local dynamics of the disease around the 

disease-free equilibrium for �� 	 1. For our vaccination model 

to exhibit a forward bifurcation, � 
 0 and F� (as defined in 

(4.11) must be positive so that condition F � 0  will be 

satisfied. In the backward bifurcation situation, the sign of F� 

must be negative for the quantity F 
 0.  For numerical 

verification of the results in (4.10) and (4.11), we consider the 

following parameter values for both forward and backward 

bifurcations. 

Forward bifurcation 

Parameter values are chosen as follows: � 	 0.00006, � 	 0.0013,  ! 	  # 	 0.05, � 	 0.3, � 	0.001,� 	 0.01.Using these numerical values, F� 	 8.884 J10D which is greater than zero. Hence, F 
 0.  We 

calculate 	� 	 6.977 J 10)! 
 0 .As a consequence, system 

(2.4) – (2.6) exhibits a forward bifurcation. 

Backward bifurcation 

To verify the condition F 
 0, � 
 0	required for backward 

bifurcation, the following parameter values are considered: � 	 0.01,  ! 	  # 	 0.01, � 	 0.004, � 	 0.2, � 	0.003, � 	 	0.03.Then, using (4.10) and (4.11), � 	 7.561 J10)! 
 0, F� 	 −62.035 � 0 and consequently F 
 0  in 

view of (4.10). 

Next, we investigate the role specifically played by 

treatment (�),  transmission 	(�) , waning (�)  and efficacy ( !,  #) parameters in the occurrence of forward or backward 

bifurcation. To achieve this, we present bifurcation diagrams 

in figures 1-2. 

 
Fig. 1. Bifurcation diagram in the plane (��, I) for the case � 	 0.24.  

The bifurcation parameter.is the basic reproduction 

number��. The solid lines denote stability while the dashed 

lines denoteinstability. The numerical values for other 

parameters are as follows: 

� 	 0.01, � 	 0.006, � 	 0.5, � 	 0.009,  ! 	  # 	 0.03, �	 1.5. 
Using these values, �� 	 5.6376 	F�w	�∗ 	 0.19. Hence,	� 
 	�∗  and the model undergoes a 

backward bifurcation. 

 

Fig. 2. Bifurcation diagram in the plane ( ��, I ). 

The solid lines denote stability while the dashed 

linesdenoteinstability. Parameter values are � 	 0.01, � 	0.001, � 	 0.039, � 	 0.009,  ! 	  # 	 0.6, � 	 	0.05, � 	0.07.system (2.4)- (2.6) exhibits a forward bifurcation. The 

bifurcation value is �� 	 1.1678. 
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5. Results and Discussions 

We have performed a bifurcation analysis on our vaccination 

model described in (2.4) - (2.6) by applying the bifurcation 

method which is based on the use of center manifold theory. 

Conditions ensuring the occurrence of forward or backward 

bifurcations are derived. For forward bifurcation, the criterion F < 0 and � > 0 is required where F and � are both given 

by conditions (4.10) - (4.11). In the case of backward 

bifurcation scenario, the condition F > 0 , � > 0  must be 

satisfied. The two qualitative conditions are numerically 

verified using realistic parameter values of the model. The 

obtained results validated the bifurcation conditions. 

In addition, numerical simulations show that the existence of 

a certain kind of bifurcation critically depends on the interplay 

among the four biological parameters explicitly included in the 

model. These are treatment (�), waning (�), transmission (�) 

and efficacy ( !,  #)	parameters. If the therapeutic treatment (�)  is above a certain threshold value �∗	Qxyℎ  a high 

transmission rate, a mediocre efficacy rate and a waning rate � > 0, the model exhibits a backward bifurcation. Figure 1 

depicts this situation. Our analysis further reveals that if 

transmission parameter � is sufficiently small, treatment rate 

lies below a certain threshold and an intermediate vaccine 

efficacy the bifurcation is forward. The bifurcation diagram 

describing this situation is shown in figure 2. 

6. Conclusion 

One of the major undertakings of modeling is to explore the 

backward bifurcations in the model. This is because in a 

backward bifurcation, disease elimination is no longer feasible 

for �� < 1.	Since the phenomenon of backward bifurcation is 

possible in our proposed model, we perform bifurcation 

analysis, where we determine threshold values and obtain 

conditions for both forward and backward bifurcations. Some 

numerical simulations were performed to verify our analytical 

results. From the results, the transmission rate must be 

sufficiently small, treatment rate must lie below a certain 

threshold value and an intermediate vaccine efficacy in order to 

have a forward bifurcation. A backward bifurcation requires a 

high transmission rate, a mediocre vaccine efficacy and a 

treatment rate which must lie above a certain threshold value. 
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