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Abstract: The guidance laws are commonly designed to yield as small a miss distance as possible, harmonious with the 
missile’s acceleration capability. In recent decades, the concept of optimized guidance law is well understood in applications 
where information concerning the target range and line-of-sight angle is available. Researchers' efforts have been continually 
made to apply modern control theory to conventional and adaptive autopilot designs, even though the classical theory is still 
applicable to autopilots. It can be noted that it is desirable to perform a detailed computer-aided feasibility study within the 
context of a realistic missile-target engagement model. Development and evaluation of guidance and control laws for simplified 
missile-target engagement scenarios are extended and adapted to the air-to-air missile situation and implemented in a complete 
three-dimensional engagement model. Thus, this study proposed a computational method for constructing an optimal midcourse 
guidance law, which is based on the optimal control theory and initial boundary conditions. This proposed guidance law is 
derived from an optimal control theory with the boundary conditions such as allowed relative distance between missile and target 
at the final time, low line-of-sight rate. A numerical simulation verifies the performance of this guidance law with the impact of 
harmonic wind. The simulation results demonstrate that the quality of effectiveness as well as the applicability of this proposed 
algorithm. 

Keywords: Optimal Control, Optimal Guidance Law, Midcourse Phase, Wind Disturbance 

 

1. Introduction 

The guided missiles consist of aerodynamic guided missiles, 
which use an aerodynamic lift to control its direction of flight. 
An aerodynamic guided missile can be defined as an 
aerospace vehicle, with varying guidance capabilities, that is 
self-propelled through the atmosphere to inflict damage on a 
designated target. Two common types of guided missiles that 
create a threat to aircraft are the air-to-air (AA), or 
air-intercept missiles (AIM), and the surface-to-air (SAM). 
The AA and SAM missiles are launched from interceptor 
fighter aircraft and employing various guidance techniques. 
Surface-to-air missiles can be launched from land or sea-based 
platforms. 

Conventional proportional navigation systems have been 
improved with time-variable filtering, and the design process 
has been enhanced with automatic computer approaches. 
Several studied have been taken in the past to investigate, 
evaluate, and improve the proportional navigation problem 
[1, 8-12]. With online Kalman estimation for filtering noisy 
radar data and optimal control gains, the guidance systems 
have been developed in performances. These approaches are 
commonly designed to yield as small a miss distance as 
possible, consistent with the missile’s acceleration 
capability. 

In recent decades, the concept of optimized guidance law is 
well understood in applications where information concerning 
the target range and line-of-sight angle is available. 
Researchers' efforts have been continually made to apply 
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modern control theory to conventional and adaptive autopilot 
designs, even though the classical theory is still applicable to 
autopilots. 

Optimal control and estimation theory have been 
commonly used in the design of advanced guidance systems 
from the late 1960s [2-7, 13-16]. Such approaches have been 
used to develop tracking algorithms that extract the maximum 
amount of information about a target trajectory. This 
information used to optimize the directed missile toward the 
selected destination. Compared to general guidance and 
control techniques, the advantages of the optimized system are 
most significant against maneuverable airborne targets, where 
target acceleration information and rapid guidance system 
response time are required to achieve acceptable accuracy, in 
minimum time. Besides, to solve highly non-linear flight 
control problems, neural network algorithms, and fuzzy logic 
theory have been developed, which is motivated by the 
demand to deal with non-linear flight control and performance 
robustness problems. 

It can be noted that it is desirable to perform a detailed 
computer-aided feasibility study within the context of a 
realistic missile-target engagement model. The guidance and 
control laws have been developed and evaluated for simplified 
missile-target engagement scenarios, which must be extended 
and adapted to the air-to-air missile situation and then 
implemented in a complete three-dimensional engagement 
model. 

In reference [1], by considering the desired impact angle 
without violating the field-of-view limit, the authors studied a 
two-stage pure proportional navigation guidance law. 
Majumder et al. investigated a near-optimal solution in 
real-time for air-to-air engagement [2]. This solution is used to 
solve the midcourse guidance problem in real-time for 
air-to-air engagement. The authors also presented recent 
developments in this field. 

In reference [3], the authors proposed an optimal 
midcourse guidance law with flight path angle and lead angle 
constraints to reach a circular target area. This guidance law 
was derived by applied an optimal control theory, which 
minimizes control energy weighted by a power of a 
range-to-go. However, in this research, the target was 
considered as a stationary target because it moves so slowly. 
For that target, Zhang et al. proposed a novel closed-form 
guidance law with impact time and impact angle constraints 
[4]. This guidance law takes the missile’s normal 
acceleration as the control command directly. By simplifying 
missile dynamics under small heading error approximation, 
Chen and Wang derived an optimal guidance law with 
impact angle constraint against a stationary target [5]. An 
impact time requirement is achieved by adding a feedback 
controller to the obtained optimal guidance law. 

By solving an optimal control problem minimizing the 
energy cost function weighted by a power of range-to-go, 
Park proposed an optimal guidance law with terminal angle 
constraint at the end of the midcourse phase [6]. In reference 
[7], considering the final velocity vector constraint, an 
optimal terminal guidance law was developed for 

exoatmospheric interception using the optimal control theory. 
By taking the gravity difference model in this approach, the 
proposed guidance law requires much less fuel than the 
traditional ones in the exoatmospheric interception. Various 
missile guidance laws-based optimal theory has been 
developed, and their performances have been verified in 
several aspects, including accuracy, robustness, and 
efficiency [17-22]. 

In recent years, the combined guidance laws have been 
applied widely for air-to-air missiles. These guidance laws 
have several advantages, such as the significant distance of 
attack, high accuracy, sizeable initial look-angle. 

In the literature review, however, the targets move so 
slowly or stationary. Therefore, the parameters of the target 
cannot be introduced in the geometric dynamic equations 
that represent the relationship between the missile and target. 
Then, by applying the optimal control theory, the analytics 
guidance law can be natural to synthesize. For maneuver 
targets, the guidance law is based on the proportional 
navigation guidance law with impact angle and impact time 
[5, 6, 19-21]. This guidance law, however, is not compared 
to the optimal one. So, in this study, an optimal guidance law 
is proposed for a missile to attack a maneuvering target. This 
guidance law is derived from the optimal control theory with 
the boundary conditions such as allowed relative distance 
between missile and destination at the final time, low 
line-of-sight rate. 

The rest of this paper is as follows. In section 2, based on 
the dynamic missile model, a state equation system is deduced. 
An optimal midcourse guidance law is also presented in this 
section, which is based on the boundary conditions at the final 
time and optimal control theory that minimizes a range of 
weighted control energy. The simulation results and 
investigation of the proposed guidance law with the influence 
of wind are given in section 3, concluding the paper will be 
presented in section 4. 

2. Computation of an Optimal Midcourse 

Guidance Law 

2.1. Equation of Motion 

The desired trajectory of a missile is shown in Figure 1. 
Where, Vm and ψm are velocity and flight path angle of the 

missile, respectively; (x, z) is the position of the missile; 
* *( , )m mx z  is the desired position of the missile; *

mψ  is the 

desired flight path angle of the missile; h is the instant 
deviation that is defined as a relative distance from the target, 
which is perpendicular to the velocity vector. 

The equations of motion in the x0x1z1 coordinate as follows: 

1

1

cos

sin

m

g
zV

m

m

n

x V

z V

ψ

ψ
ψ

∆ =

 = ∆
 = ∆


ɺ

ɺ

ɺ

              (1) 
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We assume that xm is a variable, then, zm=f(x1) is the desired 
trajectory in the coordinate’s x0x1z1. The function f(x1) must 
ensure rectilinear asymptote with the straight line x0x1. 

The function f(x1) is described in detail as follows: 
A function which represents the transition from Oxz 

coordinate to x0x1z1 coordinate is given in (2). 

( )2
0
20 2

2

x x
x x

z K e σ
σ

−
−−

=             (2) 

where, Ox is the horizontal asymptote of the function z; 

z=0 when x - x0=0; and z=
1

2
max

K
z e

σ
−

=  when 0x x σ− = . 

We aim to find the values K and σ so that the graph of the 
function z passes through the point (x1, a) and reaches the 
maximum value at (x2, b). Where, x1, x2, a, and b are known 
values. Using the division method, we get a solution x* from 
which we find K and σ satisfy the requirement. The first and 
second derivatives of (2) are given as (3) and (4): 

1
2 1 2

*
;

1

x x
K be

x
σ σ−

= =
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02

2
1

x x
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x xz K
f e
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 = = −   ∂   

        (3) 

( )2
0
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2
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2 2 2
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3

x x

xx

x x x xK
f e σ

σ σ σ

−
− − −

= − −  
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      (4) 

It can be seen from the Figure 1 that the deviation between a 
missile trajectory and the desired one is determined as follows: 

1m mh h z z z∆ = − = −  two-sides derivation and combination 

with (1) we have: 

21 sin( )m x mh V f ψ ψ∆ = + ∆ −ɺ            (5) 

ψm is the desired flight path angle at the time t. 
Let mψ ψ ψ∆ = ∆ −  is the bias between the flight path 

angle and the desired one. Two-sides derivative is: 

mψ ψ ψ∆ = ∆ −ɺ ɺ ɺ                  (6) 

Combining with the first equation of the (1), we have: 

21 sin( )

z m
m
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g
n

V

h V f

ψ ψ

ψ
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ɺ

 

where, nz is the normal overload factor. 

Let 
2 21 ( ); 1m

zm x z m m m x

V
n f n V V f

g
ψ= + − = +ɺ    (7) 

We get: 

sin( )
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V
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∆ =
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ɺ

ɺ
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Figure 1. The desired trajectory of a missile. 

2.2. Computation of an Optimal Midcourse Guidance Law 

Let us consider the cost function is as follows: 

2 2 21 1 1
1 2 02 2 2

min

f

f f

o

t

t t z

t

J h kn dtρ ψ ρ= ∆ + ∆ + →∫      (9) 

2 2

1

2
f f

T

f

t t

G P
h h

ψ ψ
×

∆ ∆    =     ∆ ∆   
; 1

2

0

0
fP

ρ
ρ

 
=  
 

 

fP  is the symmetric matrix. 

From (7) and (8) the Hamiltonian function is as follows: 

21
sin

2
zm h m zm

m

g
H n V kn

Vψλ λ ψ∆∆= + ∆ +     (10) 

Co-state variables are defined as the following: 
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0

h m

h
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∆
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      (11) 

The expression determines the optimal solution 
/ 0

mzH n∂ ∂ = , we obtain: 

1
zm

m

g
n

k V ψλ∆= −               (12) 

From (9), the Teminant function is: 
2 21 1

1 22 2 ff ttG hρ ψ ρ= ∆ + ∆ , we have converted boundary 

conditions: 

1

2
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∆
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into a matrix form: 

1

2

0
;

0
ff

f f f

h tt

P P P
h

ψλ ρψ
ρλ

∆

∆
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     (13) 

The Equation (8) is rearranged in a matrix form as the 
following: 

0 0
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m
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where, sin ψ ψ∆ ≈ ∆  

The dynamics of missile is given: 

(11)
x A x Bu= +ɺ                   (14) 

where,  

(11) 0 0

0m

A
V

 
=  
 

, 
0

m

g
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, x
h

ψ∆ 
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, zmu n=  

From (11), we can rewrite in the following form: 
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m
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where, (22)
Aλ λ=ɺ  

(22) 0 cos
;

0 0
m

h

V
A

ψλψ λ
λ

∆

∆
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   

 

From (12) and (14) we have: 

[ ](11) 1
1 0

m

g
x A x B

k V
λ= −ɺ  

We can rewrite in the following form: 

(11) (12)
x A x A λ= +ɺ               (16) 

where, 

2
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g
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And from (15) and (16) we obtain: 

(11) (12)

(21) (22)
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A Aλ λ
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ɺ
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where, [ ](21)
2 2

0A
×

=  

From (13), the states at the final time are determined as 
follows: 

2 2

f

f

tf
t

Ix
x

Pλ
×  

=   
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              (18) 

The solution of (17) is ( )

f

f

t

x x
t - t

λ λ
   

= Φ   
   

 

Substituting into (18), we have: 

11 12 5 5

21 22

( ) ( )

( ) ( ) f

f f

tf
f f

t t t t Ix
x

t t t t Pλ
×Φ − Φ −    

=      Φ − Φ −        
    (19) 

From (19), we get: 

( )11 12
f

tfx P x= Φ + Φ  ⇒ ( ) 1

11 12f

f
tx P x

−
= Φ + Φ  

( )21 22 ( )
f

f T
tP x P t xλ = Φ + Φ =           (20) 

where, ( ) ( ) 1

21 22 11 12( )T f fP t P P
−

= Φ + Φ Φ + Φ  

From (13) and (20), we obtain boundary conditions: 

( )T f
fP t P=                (21) 

Two-sides derivative of (20) we get: 

( ) ( )T T
P t x P t xλ = +ɺ ɺɺ            (22) 

From (15), (16), (20), and (22) we get: 

(22) (11) (12)( ) ( )( ( ) ) ( )T T T T
A P t x P t A x A P t x P t x= + + ɺ  

( ) ( )(22) (11) (12)( ) ( ) ( ) ( ) ( )
T T
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( ) ( )

2 2
21 1

12 21 11 22 11 12

2 2
1 1

22 21 11 21 12

(cos )
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m m
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m mk kV V

g g
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ψ
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ɺ                     (24) 

From (12) and (20) an optimal midcourse guidance law is 
determined as follows: 

[ ]1
1 0 ( )T

zm

m

g
n P t x

k V
= −           (25) 

To find P(t), it is necessary to solve the Riccati equation (24) 
with boundary conditions (21). However, this is very difficult 
because the (24) has no analytic solution. Therefore, here we 
find the approximate solution by adding constraints on the 
quality criteria of the system. 

From (25), we have: 

11 21
1

( )zm

m

g
n P P h

k V
ψ= − ∆ + ∆  

Let 1 11 2 21
1 1

;
m m

g g
k P k P

k kV V
= = , we get: 

1 2zmn k k hψ= − ∆ − ∆             (26) 

So, instead of finding P11, P21, we find k1 và k2; 
Substituting (26) into (7), we have: 

1 2( )
m

g
k k h

V
ψ ψ∆ = − ∆ + ∆ɺ          (27) 

A two-sided derivation of (27) is given: 

1 2( )
m

g
k k h

V
ψ ψ∆ = − ∆ + ∆ ɺɺɺ ɺ          (28) 

Let 1 2;y yψ ψ= ∆ = ∆ ɺ , the (28) is rearranged as the 

following: 
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The characteristic equation of the equation system (29) is 
followed: 

2
1 2 0

m

g
k gk

V
α α+ + =  

2

1 1 2

1,2

4

2

m m

g g
k k gk

V V
α

 
− ± − 
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        (30) 

The general solution of (28) is given: 

1 2
1 1 2

t ty c e c eα αψ= ∆ = +           (31) 

Equation (31) is the general solution form of the 
homogeneous (28). In order to errors in the stable mode 
become zero, just satisfy conditions α1 < 0 andα2 < 0. To avoid 
over-tuning, α1 andα2 are real numbers, which means that: 

2

1 24
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g
k gk

V

 
> 

 
 ⇒ 2

1 22 ; 0m

k
k V k

g
> >      (32) 

Because k1 > 0 and k2 > 0, then α1>α2. Therefore, if α1<0, it 

will be sure that α2 < 0. Besides, we have: 11/ α τ− = , where 

τ is a time constant. 
We add two constraints to the system. The first constraint is 

that the control law must ensure that the time constant is not 
higher than the allowed time constant. 

Then, we obtain: 

2

1 1 24
1

2

m m
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g g
k k gk

V V

T

 
− + − 
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where, TCP is the allowed time constant. 
Therefore, we get: 
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            (33) 

The second constraint is that a normal overload (the value 
of the control signal) is not higher than the allowed overload 
(nzmCP), which means that |nzm| ≤ nzmCP.. 

Integrating with (26), we get: 

1 max 2 maxzmCPn k k hψ= ∆ + ∆  

where, max max, hψ∆ ∆ are the maximum value of bias of flight 

path angle and instant deviation, respectively. Then, 
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Substituting k1 into (33), we get: 
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From (7) and (26), we obtain: 

1 2

21

m
z m

x

Vk k h
n

gf

ψ ψ∆ + ∆
= − +

+
ɺ        (36) 

So, the equation (36) is the optimal midcourse guidance law 
with the coefficients are determined as (34) and (35); and

,  x mf ψɺ  are calculated as (3) and (5). 

 

Figure 2. Determining a desired line-of-sight angle. 

2.3. Determining the Desired Line-of-Sight Angle at the 

Final Time 

Based on the Figure 2, we obtain: 

0

( )sin sin
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ψ ψ

+ ∆ = ∆
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      (37) 

Where, r is a relative distance between a missile and a target, 
then r(tf)=rsn, and r(t0)=r0; tf is a final time; tsn is a 
self-navigation time after finishing the midcourse phase. 

Solving this equations system, we get: 
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ψ+
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+

         (38) 

However, since the missile trajectory is a high curve, we 
have to calculate the amount of compensation. Therefore, the 
desired line-of-sight (LOS) angle compensated by the 
missile’s curved trajectory is given as follows: 

*
0arcsin sinsn t

m t c
sn m sn

t V

t V r
ψ ψ σ ψ

 
= ∆ + + + 

   (39) 

where, Ψc is a compensation of the flight path angle. 
The compensation of the flight path angle is calculated as 

follows: 

sin /c t e snV t rψ ≈             (40) 

where, te is the time error when the missile reaches the 
engagement point; rsn is a relative distance between the missile 
and target at the final time. 

To eliminate slippage, this compensation is given: 

sin sin( )t
c t

m

V

V
ψ ψ ψ= − ∆ − ∆        (41) 

2.4. A wind Turbulence Model 

It can be noted that wind turbulence can be modeled in 
several forms such as disturbance models according to the 
horizontal wind field and harmonized wind field. In this paper, 
we investigate the influence of the harmonized wind field in the 
horizontal plane to the quality of the proposed guidance law. 

The harmonized wind model is given as follows: 

( )
( )

0

0

W

W

10sin 2 /

10sin 2 /

x W

z W

V t T

V t T

π

π ϕ

 =


= +
          (42) 

3. Simulation Results and Discussion 

In this work, numerical simulations were designed for 
evaluating the quality of effectiveness as well as the 
applicability of this proposed guidance law. 

In the simulation experiments, the parameters of a missile 
and target are given in Table 1. 

Table 1. The parameters of a missile and target. 

Parameter  Value 

Velocity of missile Vm 900 m/s 

Overload factor |nm| ≤ 30 

Line-of-sight angle σ0 atan (30/31) 

Initial missile position (xm0, zm0) (0, 0) m 

Target position (xt, zt) (31.000, 31.0000) m 

Relative distance between the missile and target at the final time rsn 10.000 m 

Velocity of target Vt 300 m/s 

Path angle of target Ψt 135° 

Velocity of wind W0 10 m/s 
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In order to investigate the impact of wind on the proposed 

guidance law, we design four cases to do numerical simulation. 
In this study, we assume that the wind is harmonic wind with 
amplitude W0=10m/s, period Tw=10s, and the time of 

occurrence T ∈  [5; 15] s. The direction angle of wind 
compared to Oz axis are π/6, π/3, π/2 corresponding to case 2, 
3, and 4. The mathematical model of wind in four cases is 
given in the table 2. 

Table 2. The mathematical model of wind. 

Case 1 Case 2 Case 3 Case 4 

No wind 

( )
0

0

W W

W

10sin 2 /

2
10sin

6

x

z
W

V t T

t
V

T

π

π π

 =

  

= +   
  

 

( )
0

0

W W

W

10sin 2 /

2
10sin

3

x

z
W

V t T

t
V

T

π

π π

 =

  

= +   
  

 

( )
0

0

W W

W

10sin 2 /

2
10sin

2

x

z
W

V t T

t
V

T

π

π π

 =

  

= +   
  

 

 
The Figure 3 shows the missile trajectory and target 

trajectory in four cases. It can be seen that the missile 
trajectories in four cases are the same. However, when the 
harmonic wind is introduced, there is a bias compared with the 
case that does not consider the wind (see Figure 4). 

 

Figure 3. The missile trajectory and target trajectory. 

 

Figure 4. The difference of missile trajectories between four cases. 

The overload factor and its difference in the four cases are 
shown in Figure 5 and Figure 6. When the wind occurs, there 

was a bias of overload factor (∆nm=1.3). However, this bias 
will be disappeared when the wind is finished. 

Figure 7 and Figure 8 represent the instant deviation and its 
bias. In Figure 7, as expected, the instant deviation goes to 
zero. Also, it becomes significant in the period that wind is 
introduced, and quickly reduces to instantaneous value over 
time as wind is disappeared. 

 

Figure 5. The overload factor. 

 

Figure 6. The difference of overload factor between four case. 
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Figure 7. The instant deviation. 

 

Figure 8. The difference of instant deviation. 

 

Figure 9. The line-of-sight rate. 

 

Figure 10. The difference of the line-of-sight rate. 

 

Figure 11. The heading angle of the missile. 

 

Figure 12. The difference of the heading angle. 

The LOS rate and its difference between four cases are 
shown in Figure 9 and Figure 10. There is a deviation of the 
LOS rate at the final time between two cases: one considers a 
harmonic wind, whereas the other does not consider it. 
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However, it should be noted that this deviation is so small, 
0,005σ∆ ≈ −ɺ deg/s. 

The heading angle and its difference between four cases are 
shown in Figure 11 and Figure 12. It can be seen that the heading 
angle reaches the desired one even there is a disturbance wind. 

4. Conclusion 

The parameters of slowly or stationary targets cannot be 
introduced in the geometric dynamic equations that represent 
the relationship between the missile and target. Then, the 
analytics guidance law can be synthesized by using the 
optimal control theory. However, for maneuver targets, the 
guidance law based on the proportional navigation is not 
compared to the optimal one. 

So, an optimal midcourse guidance law is presented in this 
paper, which is based on the optimal control theory that 
minimizes a range of weighted control energy with initial 
boundary conditions. The simulation results show that the 
constraint requirements are satisfied at the final time, such as 
low LOS rate, overload factor, instant deviation. By 
introducing the harmonic wind, the simulation results provide 
the evaluations of the quality of effectiveness as well as the 
applicability of this proposed guidance law. 
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