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Abstract: Many patents have suggested that spinning the aircraft wheel before touchdown would lessen tyre wear as indicated 

by landing smoke and rubber deposites on the runway caused by skidding wheel at the point of impact. In this paper, the required 

torque to spin the aircraft wheel at approach speed has been calculated using ANSYS Workbench CFX, which is used to 

determine the wheel aerodynamic forces developed by simulation of fluid flows in a virtual environment. The wheel has been 

tested against different wind speeds, and the aerodynamic forces for the spinning wheel are presented, which include; 

translational and rotational drags, lift created by vortex, and shaft rolling resistance. 

Keywords: Spinning Aircraft Wheel, Aerodynamic Force, Translational Drag, Rotational Drag,  
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1. Introduction 

Spinning the aircraft wheel before touchdown is a proposed 

solution to eliminate the smoke generated between the tyres 

and runway at landing impact [1-9]. The landing smoke 

phenomenon is described by the following chain events: firstly, 

the aircraft approaches the runway at a relatively high speed. 

Therefore, a high velocity difference exists between the 

wheels and runway, which leads to the tyres being fully locked 

on the runway at landing until the friction force at the contact 

surface increases sufficiently for the wheel to ‘spin-up’ and to 

reach a constant angular velocity which is equivalent to 

aircrafts forward speed [10]. 

During the skidding phase, a high temperature is generated 

in the tyre tread rubber, sufficient in fact to locally melt the 

rubber. The melted rubber becomes weak enough for tyre wear 

to take place [11]. Part of worn rubber sticks to the runway 

whilst the remaining part is burnt-off forming the distinctive 

puff of white smoke [12]. 

In this paper, a case study of Boeing 747-400 main landing 

wheel has been modelled using ANSYS CFX in order to 

calculate the required torque to spin the wheel in the aircraft 

approach phase. 

The wheel is tested against three high wind speeds. The 

lowest wind speed is at least equal to aircraft approach speed 

in order to simulate the case of a zero heading wind. The 

model represents the forces created during wheel rotation. 

Finally, the torque necessary to spin the wheel for required 

rotation is presented. 

1.1. Literature Review 

Kothawala, Gatto and Wrobel carried out a computational 

investigation of the combined effect of Yaw, rotation and 

Ground proximity on aerodynamics of an isolated wheel using 

steady and unsteady Reynolds-Averaged Navier-Stokes 

(RANS & URANS). The diameter and width of the wheel was 

0.416m and 0.191m respectively. They tested the rotated 

wheel against a free stream of air with speeds of 70 and 98 m/s. 

The wheel rotation speeds were 100, 200, and 327 rad/sec. 

However, they conclude that the wake on rear of wheel 

increases with increased rotation speeds [13]. 

Morelli tested a stationary and rotated wheel against the 

same wind speed using a wind tunnel. He found that the drag 

is increases by about 10% when the wheel is rotating. He 

concluded that this increase of drag was due to negative lift 

and induced drag [14]. 
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Rahman carried out a computational study on flow around a 

rotating short cylinder in order to study the effect of rotation 

on the aerodynamics forces. The cylinder considered is in X-Y 

plane, the rotation is about the Z axis, and the flow is along the 

positive x - direction. He found that the clockwise rotation of 

the cylinder reduced the pressure region above the cylinder 

with higher pressure at the bottom surface. The difference in 

pressure producing an upward lift force for clockwise rotation 

and vice versa for anticlockwise. Also, the lift force is 

dependent on the cylinder spin ratio, an increase in the 

rotational velocity producing an increasing lift force [15]. 

1.2. Case Study Data 

The wind speeds used in this simulation are; 80.7, 100, and 

120 m/s. The first wind speed (80.7 m/s) is equal to the Boeing 

747-400 approach speed whilst the other higher speeds are 

assumed in case of heading wind speed increase [16]. The 

wheel geometry data is presented in Table 1 [17, 18]. 

For required wheel rotation speed, it is important to know 

the aircraft touchdown speed in order to calculate the 

equivalent wheel rotation speed with regard to tyre deflection. 

However, the aircraft will lose about 10 knots (5.14 m/s) 

during the flare manoeuvre before touchdown, which results 

in a 75.6 m/s forward speed [19]. 

The tyre deflects upon landing impact, which means a lesser 

radius during rotation. 

For simplification, the tyre free rolling velocity is assumed 

to be 121 rad/sec, this is calculated using the tyre radius and 

aircraft forward speed on the runway. Here we will simulate 

50% of the wheel full free rotation, this is because the aircraft 

wheel is heavy and consequently it may requires large wind 

turbines for full spinning. Moreover, designing the turbine for 

full wheel rotation may lead to excessive free rolling rotation, 

e.g. in the case of high head wind speed, while using the 50% 

of free rotation with wind speed equivalent to the aircraft 

approach speed to design the turbine will guarantee it rotates 

at the minimum wind speed. This gives the turbine the 

opportunity to rotate in a safe mode if the head wind were to 

increase. 

Table 1. Wheel geometry data. 

 Weight (kg) Radius (mm) Width (mm) 

Tyre 110 622.3 482.6 

Rim 74.4 255 ------- 

2. Theoretical Background 

In this model, it is assumed that the wheel is moving 

through the air with zero angle of attack and the direction of 

rotation of the wheel is anticlockwise. The wheel will 

accelerate from zero to the required rotational speed. Fig. 1 

shows the forces to be calculated in order to determine the 

torque is required to spin the wheel. The wind turbine should 

be physically attached to the wheel rim to consider the tyre 

deflection effect at touchdown. In this case, the rim mean 

radius is the force arm to calculate the required torque to be as: 

��������� � 	��������  ����              (1) 

where, ��������� and 	�������� are the required torque (N.m) 

and the required force (N ) to spin the wheel respectively, and ���� is the mean radius of the rim (m), which depends on the 

wind turbine position. 

 

Fig. 1. External forces acting on the rotating wheel. 

The required force should be at least equal to the sum of all 

wheel forces including to the aerodynamic forces some of 

which will be generated during the wheel rotation. Therefore, 

the required force will be as: 

	�������� �  	�� 
 	� 
 	�������         (2) 
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where,  	��  is the equivalent inertial force during acceleration 

(N), 	�  is the total drag force, which is inclusive of the 

translational and rotational drags (N), and 	������� is the shaft 

rolling resistance (N). 

2.1. Drag Force 

There are two types of drag force. Firstly, the translational 

drag in x direction (	��), which impacts the wheel frontal area 

as shown in Fig. 1. Half of this force is positive for rotation 

and other half is negative “resistance” and because the wheel 

is symmetrical, therefore, the two parts have an equal and 

opposite effect in the static condition and the resultant torque 

on the wheel shaft becomes zero. 

On the other hand, the total force, will be applied to the 

wheel shaft in x direction which will increase the rolling 

resistance. 

The formula of translational drag can be calculated as: 

	�� � �
�  � ���  �� ��            (3) 

where, � is the air density (kg/��), ��� is the translational 

drag coefficient, �  is the wind speed acts on the wheel 

(�/�� ), and ��  is the wheel frontal area (��) [20]. The 

frontal area is roughly half the wheel circumference 

area; �� � !"#, here ! and # are wheel radius and width 

respectively. The force on the wheel frontal area is different 

from centre to the top or bottom surfaces. 

Once the wheel starts to rotate, half of this force in the 

positive direction becomes higher than the one in negative 

direction which is effected by the wheel rotation direction, this 

force is helpful as it will be added to the required force for 

spinning the wheel. 

The other drag force is that created during wheel rotation 

and it is called “rotational drag force” which increases in 

magnitude with increasing wheel angular velocity and occurs 

around the two side areas of the wheel, acting in the rotation (z) 

axis. The rotational drag can be calculated by this formula: 

	�� � �
�  � ��� �$���  !�%�         (4) 

where, ��� is the rotational drag coefficient, �$���  is the two 

side areas of the wheel (��), ! is the wheel radius (m), and % is the wheel angular velocity (rad/sec) [21]. 

2.2. Rolling Resistance Force 

Three types of force act on the wheel shaft in x and y 

directions resulting in the total magnitude force, 	�������. The 

three forces are, as follows: 

1. Translation drag force (	��) presented in (3), is applied 

to the shaft in (&) direction. 

2. The wheel weight force, 	' in (()) and is simply; 	' ��*, where, �  is the wheel total mass, and *  is the 

acceleration due to gravity. 

3. The lift force, which is created during the wheel rotation. 

Kutta-Joukowski lift theorem for a cylinder describes how 

this force depends on the direction of rotation and acts 

perpendicular to the air flow direction. As shown in Fig. 2, the 

wheel is pulling a thin layer of flow molecules in its rotation 

direction resulting in a faster flow on the lower surface than on 

the upper surface, which leads to less pressure than wheel top 

surface. The wheel upper surface will also pull a thin layer in 

the opposite direction to the flow which creates a vortex. This 

vortex has the effect of increasing the upper pressure. The 

difference in pressure between the wheel top and bottom 

surfaces is the lift force. In our case, the negative (downward) 

lift force increases the resistance on the shaft because it acts in 

same direction as the wheel weight force. 

 

Fig. 2. Lift force created during wheel rotation. 

The lift force can be calculated as: 

	+ � � , �                   (5) 

where, , is the vortex strength -��/�� ) and is given by [22]: 

, � 2 " ! /�                   (6) 

where, /� is the relative wheel speed (rad/sec), and it is given 

by: /� � !%. The relative speed gives the spin ratio as: 
01
2 . 

The increasing of the spin ratio causes an increasing in the lift 

force [15, 23, 24]. 

Substituting (6) in (5) with respect to the wheel angular 

velocity, the lift force will be as: 

	+ � 2 � " !� %                (7) 

Because all the parameters in (7) are unchanged with the 

exception of the wheel angular velocity, therefore, the lift 

force is zero with a stationary wheel, and increases with 

increasing wheel rotation speed. 

Now, simply the total force acting on the wheel shaft will be 

as: 

	�$ � 3-	' 
 	+4� 
 	���           (8) 

where, 	�$ is the total force applied to the shaft. Note: The 

term (	' 
 	+4 will be -	' ( 	+) if the wheel rotate clockwise 

with the same current flow direction. 

The bearing friction coefficient must be considered to 

estimate the rolling resistance. Therefore, the shaft rolling 

resistance force will be as [25]: 

	������� � �� 	�$                (9) 

where, �� is the bearing friction coefficient, assumed to be 

angular contact ball bearing with value of 0.0015 [26]. 
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2.3. Equivalent Inertial Force During Acceleration 

This force is internal which is the resistance of the wheel 

against its acceleration. Using Newton’s second law, this force 

can be expressed as: 

 	�� � � %5                (10) 

where, %5  is the wheel angular acceleration (rad/��), and can 

be calculated as: 

%5 � �6
��                   (11) 

where, t is the acceleration time (sec). Rewriting (10) with 

respect to (11), to be: 

 	�� � � �6
��                (12) 

From (12), this force depends on the time required to 

complete the acceleration and it decrease to about zero at 

(7 � ∞). 

Slow acceleration requires less force and Vice versa. 

However, the wheel aerodynamics forces is fall into the 

category of experimental science [27]. Therefore, the wheel is 

modelled using ANSYS CFX to calculate both the forces and 

the required torque. The wheel is rotated from zero to 60.5 

rad/sec during first four seconds with constant acceleration 

maintaining a constant angular speed for a further two 

seconds. 

The purpose of spinning the wheel is to investigate the 

wheel aerodynamic forces generated during rotation, these 

forces are not present on a stationary wheel. 

3. Simulation Model 

The present work describes a thorough investigation of 3D 

computations concerning the air flow around the wheel. The 

calculated results give a clear indication of the air flow 

distributions for different inlet velocity values. Modelling 

tasks using CFD programs will allow us to get closer to the 

real operating conditions. 

The 3D wheel geometry is modelled using the ANSYS 

design modeller together with the data as presented in Table 1. 

The wheel modelled inside the large domain is as shown in Fig. 

3.; the tyre being soft without grooves. The domain 

dimensions are 20 m x 20 m inlet area by 40 m long to avoid 

the wall boundary effect and so be representative of the real 

aircraft wheel conditions during approach in open air. 

 

Fig. 3. Wheel domain. 

3.1. Mesh Generating 

High-quality mesh created for accurate solutions and good 

convergence. A "Patch Conforming Method" is used to 

generate the mesh with tetrahedron form elements. In addition, 

prismatic layers are constructed for the flow near the walls and 

on the wheel surfaces using “smooth transition” option for 

more accuracy [28]. 

The flow regime is subsonic with static temperature at 288 

K and the turbulence is zero gradient. Reference and relative 

Pressures are 1 and 1.013&10= pa. Rough wall surfaces are 

used as the SST model does not accurately predict the amount 

and onset of the flow separation from soft surfaces [29]. Fig. 4 

shows the mesh model, and Table 2 presents the mesh 

statistics. The boundary conditions are the same for all 

simulations except the inlet velocities. 

Table 2. Mesh statistics. 

 Value 

nodes 9197 
elements 43703 

tetrahedrons 39663 

prisms 4040 
faces 1952 

Orthogonality Angle [30] 27.4@, acceptable range B 20@ 

Expansion factor 20@, acceptable range C 20@ 

Aspect Ratio 57@, acceptable range C 100@ 
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Fig. 4. Mesh model of the Wheel domain. 

The flow type and the physical model in the fluid domain is 

defined as ‘steady state’ with turbulence conditions using 

Reynolds-Averaged Navier-Stokes equations. Turbulence is 

modelled using the SST (Shear Stress Transport) model and 

heat transfer using the total energy model. 

The SST turbulence model is commonly used and is 

suitable for a wide range of applications. 

The total energy model allows for high speed energy effects 

and is therefore, suitable for high speed flow applications and 

has better performance at wall boundaries [31, 32]. 

3.2. SST Turbulence RANS Model 

The RANS model allows us to simulate turbulent flow as a 

steady state. Fig. 5 shows a simple definition for flow 

velocities in the RANS model. 

The flow velocity is calculated as: 

�-&E, 74 � �F-&E4 
 GH-&E4 

 

Fig. 5. Velocities definition in RANS model. 

Applying the time average procedure to the governing 

equation which gives the Reynolds‐Averaged Navier‐Stokes 

(RANS) equations to be as: 

J-�GKF 4
J7 
 JLGK,MMM GNMMMO

J&P  

� ( JQM
J&� 
 J

J&P RS TJGKF
J&P 
 JGNF

J&� ( 2
3 U�P

JG�MMMM
J&� VW


 J
J&P L(� GKHGNHMMMMMMMMO 

here, (� GKHGNHMMMMMMMM � !�P which is Reynolds stress tensor. 

SST model: 

J-�X4
J7 
 J-���X4

J&� � QMY ( Z[�Xω 
 J
J&� ]-S 
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J&�^ 

J-�ω4
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�#Y6 � max �2�a6�
1JXJ%
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where, X  and ω  are the turbulence kinetic energy and 

frequency respectively, � is the distance to the wall boundary, g is the mean strain tensor rate, 	�,� are blending function, 

which is equal to one. The constants are defined as: _ �_�	� 
 _�-1 ( 	�)… etc., Z[ � 0.09, _� � 5/9, Z� � 3/4, aY� � 0.85, a6� � 0.5 , _� � 0.44 , Z� � 0.0828,  aY� � 1, a6� � 0.856 [29, 31]. 

4. Results and Discussion 

A comparison of the air flow around the wheel at three wind 

speeds; 80.7, 100, and 120 m/s is shown in Fig. 6. As shown in 

velocity x-y diagrams, a thin layer of flow molecules is pulled 
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by the wheel in the rotation direction. At the top of the wheel, 

the layer of flow is in the opposite direction to that of the wind 

which created the vortex, this has the effect of increasing the 

pressure at the top of the wheel, thus producing a negative lift 

force. Moreover, the wind speed is higher at the wheel bottom 

with consequently less pressure than the top wheel area, which 

leads to the total overall vertical force acting on the wheel to 

be in a downward direction. The lift force varies directly as the 

wind speed, that is the higher the wind speed the higher the lift 

force developed. The air flow speed behind the wheel is 

approximately zero for all wind speeds, which is in agreement 

with [13]. 

In general, an increase in the wind speed produces a 

corresponding increase in the aerodynamic forces around the 

wheel. 

 

Fig. 6. A comparison of different flow profiles around the wheel at different wind speeds. 

4.1. Translational Drag Force 

The impact of wind flow on the wheel shows different 

characteristic force behaviour, which is speed dependant. The 

translational drag force at high wind speeds (100 and 120 m/s) 

increases over its steady state value immediately to settled 

down shortly afterwards. This impact force has the effect of 

increasing the resistance on the wheel shaft. The translational 

drag force at the three different wind speeds all show steady 

values after a period of one second, even while the wheel 

accelerates. A Comparison of the force curves and distribution 

profiles are presented in Fig. 7 and Fig. 8 respectively. 
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Fig. 7. A comparison of translation drag forces vs. time with different wind 

speeds. 

 

Fig. 8. Contours of translational drag force with different wind speeds. 

At a wind speed of 80.7 m/s, a drag force of 1383 N is 

generated by the air flow, which impinges the wheel frontal 

area at the moment of impact. 

Once the wheel starts to rotate, it is seen that the force drops 

to 1331 N only to increase to 1370 N within 0.09 sec before 

reaching a steady state value of 1380 N, which is close to the 

value of a stationary wheel. 

At a wind speed of 100 m/s, the force increases immediately 

from 1383 N to 1900 N within 0.03 seconds. After a further 

0.06 seconds it has decreased to 1400 N only to recover and 

increase again, reaching a steady state value of 2150 N within 

0.89 seconds following some slight undulations. 

At a wind speed of 120 m/s, the force behaviour is similar to 

that generated by the 100 m/s wind speed except with higher 

values. The peak value being 3410 N within 0.1 seconds 

which settled down to steady state value of 3100 N after 0.97 

seconds. 

4.2. Side Force - Including Rotational Drag 

The rotational and side drag force increases from 64.8 N 

during wheel acceleration to reach a steady state at ultimate 

wheel rotation velocity. The resultant rotational drag force 

acts in the (-z) direction that because the flow acts on the rim 

side to push the wheel as it larger side area than the other 

part. 

According to rotational drag force formula, it is created 

during wheel rotation, but as the wheel aerodynamic force is 

determined by experimental science, this simulation shows 

that the flow is producing drag force on the wheel sides area 

because of the tyre shape which is include breadth. 

Moreover, the flow is pulled inside the hub and then 

re-circulated. This re-circulated flow impinges on the free air 

flow straight past the wheel. Therefore, the force of rotational 

drag here is inclusive of translation drag on the wheel sides, 

which is affected by wind speeds. However, Fig. 9 and Fig. 10 

shows force curves generated during wheel acceleration and a 

comparison of wheel profiles at different wind speeds 

respectively. For all wind speeds, the force starts with the 

same value of 64.8 N. 

 

Fig. 9. A comparison of side drag forces vs. time with different wind speeds. 
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Fig. 10. Contours of side drag force with different wind speeds. 

At 80.7 m/s wind speed, the force increased to 105 N within 

0.13 seconds before to decreasing to 99.5 N after 0.22 seconds 

and then rose gradually during the wheel acceleration to attain 

a steady state at 106 N. 

At 100 m/s wind speed, the force increased to its peak value 

of 156 N within 0.12, which is faster and higher than the 

corresponding force at 80.7 m/s wind speed. The force is seen 

to undulate slightly whilst still increasing overall to reach 161 

N toward the end of the wheel acceleration. 

At 120 m/s wind speed, the associated peak value was 203 

N within 0.11 seconds, which is the fastest of the three, and 

has relatively large waves. The steady state value at the end of 

acceleration was 213 N. 

4.3. Lift Force 

The downward (negative) lift force of 90 N for all wind 

speeds is created immediately at wind impact, and occurs just 

as the wheel starts to rotate. As rotation progresses different 

force profiles are produced which depend on the wind speed. 

Fig. 11 and Fig. 12 show a comparison of the lift forces for 

different wind speeds and the associated forces profiles 

respectively. In each case the force increases during the wheel 

acceleration stage before reaching a steady state. 

 

Fig. 11. A comparison of lift forces vs. time with different wind speeds. 

 
Fig. 12. Contours of lift force with different wind speeds. 
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At 80.7 m/s wind speed, the force increases to 214 N and 

the maximum vortex value occurs at 2.21 sec. At 100 m/s, and 

120 m/s wind speeds, the steady state value of lift forces are 

305 N and 408 N respectively, and the maximum vortexes 

occur at 2.54 sec and 2.83 sec respectively. 

4.4. Equivalent Inertial Force During Acceleration 

The aircraft approach period offers sufficient time to 

accelerate the wheel slowly. However, Fig. 13 shows a 

comparison of equivalent inertia force with different required 

wheel angular acceleration. 

 

Fig. 13. Equivalent inertial forces vs. time during different accelerations. 

All the above results are based on an acceleration of 15 

rad/s2 which achieves a wheel rotation velocity of 60.5 rad/sec 

within 4 seconds. Other acceleration values of 7.5 rad/�� and 

2 rad/��  are investigated, which reach the required wheel 

rotation within 8 and 30 seconds respectively. 

The equivalent inertial force to spin the wheel within 4 

seconds is 27.13 kN while this changes to 13.6 kN if the time 

extended to 8 seconds. However, we will use a spin time of 30 

seconds which requires a lesser force of 3.6 kN. 

4.5. Required Torque 

The shaft rolling resistance force is required in order to 

calculate the total required force and hence to find the required 

torque. 

Fig. 14 shows the rolling resistance forces for the three 

wind speeds considered. Using the formula in (1), with 0.8 of 

rim radius, the required torque curves for different wind 

speeds are presented in Fig. 15. However, in designing the 

wind turbine, it is necessary to assume a minimum wind speed 

to be sure the turbine has the capacity to spin the wheel in the 

worst-case scenario. For our case study, a torque of 1048.7 

N.m is sufficient to spin the wheel to 60.5 rad/sec within 30 

seconds. 

 

Fig. 14. Shaft rolling resistance vs. time for different wind speeds. 

 

Fig. 15. Required torque vs. time for different wind speeds. 

5. Conclusion 

An isolated wheel has been tested using ANSYS CFX 

against different wind speeds. The wheel was accelerated from 

zero to steady state rolling in order to investigate the 

aerodynamic forces generated during rotation, from this the 

torque required to spin the wheel was then determined. 

We conclude that the lift force depends on the rotation 

direction. In the aircraft approach condition, the lift force is 

negative (downwards) and is additive to the load on the wheel. 

Also, the shape of the tyre has the effect of increasing the drag 

force in the rotational axis. The required torque calculation 

procedure is as presented above. 

Finally, as a check, it is recommended that a further study 

should be carried out to include the use of wind turbines in order 

to test the ability to spin the wheel against various wind speeds. 

The acceleration time and torque produced should then be 

considered and compared against the results obtained above. 
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