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Abstract: In this paper we present classical PID controligpraach in designing longitudinal Stability Augmetitin
System and pitch attitude control (SCAS) at nordinéight region for a high fidelity F-16 model icling aerodynamic
uncertainty. In high angle of attack, nonlineaeet§ of aerodynamic coefficients and atmospherioulence are the main
challenge in designing and robustness of flightmdisystem. A design scenario that combines destdlesponse and robust
control (aerodynamic uncertainties and atmospharlzulence) is presented. Simulation results shwt the designed Pl
controller exhibits robustness property to systerentainties.
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hold, pitch hold to the very complex, for examplecanatic
landing as “in reference [2]".

Nowadays most modern fighter aircraft are designed V& know that development and testing of modernidéigh

statically relaxed stable or even unstable in ertodes to  arcraft partake a common emphasis on expanding the
allow for extreme maneuverability as “in refererjagg.  aPility to fly at high angles of attack which medrat the
Therefore, the stability and control charactersstif an @rcraft is flown at angles near or beyond the wing
aircraft may be estimated in the context of flyingd Maximum lift and into the post stall region whehe fift

handling qualities requirements. In the case thetgircraft VErsus alpha curve is nonlinear ‘:j“_’d subject to myma
fails to meet the requirements in some way, thefs it effects including separated flow as” in referengp.[Also

necessary to consider remedial action. Quite offem a_ngle of attack regions cannot be defined preciséﬂy_e the
imperfections occur simply as a result of the regaent for ~ &ircraft geometry and free stream conditions witate
the aircraft to operate over an extended flightetope and conditions as”in reference [4]". _
not necessarily as a result of an aerodynamic desig Many control systems are required to track an input
oversight. Alternatively, this might be explained the demand. For example, an aircraft autopilot systesuees

effects of aerodynamic non-linearity. The prefersetiition that an aircraft maintains a selected altitude. &dbtrollers

is, therefore, to artificially modify, or augmettte apparent 2re widely used, partly because they are effenepartly

stability characteristics of the airframe as “iference [2]. Pecause they are straightforward to design. They ar
The flight control system (FCS) includes two feedba Particularly common in systems that exhibit firsor

loops both of which derive their control signalsrfrmotion ~ Second-order characteristics and for damped s&yistems

sensors appropriate to the requirements of theraldatvs, Where PID control offers improvements in the system

The outputs from the inner and outer loop contrsllere '€SPOnse as” in reference [5] _

summed and the resultant signal controls the dircFae PID autopilots have been successfully integrated as

inner loop control system alone comprises the SAS rea_il-t|_me control and online n_awgatlon systemsdiocraft.

usually the first part of the FCS to be designedi agether 1S 1S not only due to their simple structure agey

with the airframe comprises the augmented airciifie  ImPlementation, but also to their adequate perfocea.

outer loop provides the autopilot which enablesyiiet to ~ HOWever, for successful implementation of such aalers,

fly various maneuvers under automatic control. pile ~ @nd without requiring complex mathematical develepm

control modes vary from the very simple, for exagrigight parameter adjustment or tuning procedure is nedfled

1. Introduction
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enhanced performance is to be achieved through tiferces lift, drag and pitching moment, respectively
operating envelope. The tuning process, whereby the

optimum values for the controller parameters ataiobd, is 3. |:|ight Control Design

a critical challenge.

Many studies were conducted to find the best way fo The goal of this study is to design a SAS and mttitude
tuning PID parameters in order to get adequatto track pilot commands with responses that satisfy
performances such as fast response, zero steddyestar, handling qualities across the entire flight envelopaircraft
and minimum overshoot/undershoot. Even though thege in presence of uncertain aerodynamic parameters.
only three parameters, PID parameter tuning isffecult For the design phase and dynamical analysis, the
process because it must satisfying complex criteitain ~ non-linear model is linearized for a given fligloindlition of
the limitations of system actuators. Also, theitiadal PID  interest. MATLAB LINMOD command generates the
controller only works for lower-order systems artks Jacobin matrices (A, B, C and D) for the state-sdawar
robustness against large system parameter undégain aircraft model from nonlinear F-16 aircraft model
This is due to the insufficient number of paraneterdeal corresponding to the specified trim condition [Bhe linear
with the independent specifications of time-domairmodels obtained in the trimming points used to glesind
response such as settling time and overshootingiras” analyze the controller are composed by followimgliional
references [6,18,19]" set of linear equations:

In this paper classic control approach (Pl) is used
design SAS and pitch attitude at high angle ofcatfar a
nonlir!ear, hig.h. fidelity F-16 model which satifsﬁet:lsseT where the states are R ,a,q,6,3,,F. ) and the control
handling qualitiesrequirements across the entire flight,
envelope of the model with aerodynamic uncertagntieis MPUtU = (0. F).
assumed that the aerodynamic force and momentidmsct  The actuator modeGA(S) used for this work
of the model are not known exactly and that theydsange
during flight due to unsteady aerodynamics at lsigyle of
attack as” in reference [1]” 20.2

S+20.2

X = Ax+Bu )

correspond a first order filter as “in referenc8][i

(3)
2. Aircraft Model Description
At first, we design SAS where typically uses sesgor

The aircraft model used in this work is that of fhd 6 measure the body_axis angu'ar rates of the Vehm,
fighter aircraft with geometry and aerodynamic dat feedback processed versions of these signals to
reported as “in reference [7]. The aerodynamic data servomechanisms that drive the aerodynamic control
tab.ula.r fOI‘m ha.V.e been Obta|ned from W|nd tunnﬂlstand surfaces. SAS Conventiona”y designed Separatmwﬁe
valid for subsonic speed up to Mach number 0.6ther |ongjtudinal and the lateral-directional dynamicsidhis is
range of angle of attackel and sideslip f) as made possible by the decoupling of the aircraftagyics in
-20 <a <90 and-30 <5< 30. The wind tunnel tests most flight conditions as “in reference [8]". Therpose of a
were conducted on sufficiently close points to ueptthe Pitch SAS is to provide satisfactory natural fregeye and
nonlinear behavior of the aerodynamic force and emtm damping the short period. And if the frequency dachping
coefficients. are both unsatisfactory or the mode is unstableallysan

Let (Vr, o, 0, q) eR* be the state vector where; s aIphg feedback is necessary. “Fig.1” illustratetsipiaxis
velocity, o is angle of attack is the pitch angle, q is the Stability with two feedbacksd, ).
pitch rate and (F 8¢) € R? be the control input vector where
Fr is the engine thrust and. the elevator angle. The uy u, GA(9 o,

Aircraft
nonlinear equations of motions of the aircraft liondinal " g? Z_ | Actuator | > Model
dynamic from as “in reference [8]" as follows:

1 K a
V, ==(-D+F, cosa —mg siny) | a
m
1 .
V, ==(-D+F, cosa —mg siny) q
.M (1) Kq |l
6=q
q= Ii(M +F er) Figure 1. Pitch- axis stability augmentation.
y

Then, we design Pl controller for pitch attituded ahe
Where m, | andyare the mass, the inertia and the flightblock diagram of pitch attitude is shown in “Fig.2%here

path angle and finally,D andM are the aerodynamics GC(S) is the controller. The deadbeat response is defised
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having the following time domain performances:
1. Zero Steady-State Error (Zero-SSE).
2. Controllable settling time Ts.
3. Minimum rise time Tr90 (0-90% of the step he)ght

Fly at nonlinear flight region (high angle of att®c
strongly depend to aerodynamic characteristicsirofadt.
The designed controller should have an acceptabkl bf
robustness to aerodynamic uncertainty. There dferefit

aerodynamic derivatives in

23

e

A

u u,

Ge(S) |—» ®_—>

—4

4. Percent Overshoot (P.O) and Percent Underskdd} (
less than 2%.

Figure 2. Pitch-attitude autopil ot.

4. Case Sudies Simulations

This section presents the simulation results tigdeSAS
and pitch hold using classical PI
high-fidelity F-16 model at high angle of attaclcluding
aerodynamic uncertainties as “equation 4”. It isedothat

Longitudinal

5 o
Ga(9) Aircraf -
A ircraft
Actuator [ > Model
a
K -
K -~ 9g
Attitude
Gyro

Lateral-Directional axis which have their influesce the
equations of motion.
uncertainty data consist of increments or percentag
variations in the important aerodynamic coefficgemind
/ derivatives as follow as “in references [11, 12]":

C,, (£50%);C,, (£10% C,, ¢ 5%pndC, ¢, €5 (x 10%

It is shown that aerodynamic

(4)

attack. In this study, we make an investigationotfustness
of designed controller in high angle of attack oegifor

simulation results are showed for linear (“equa®hand
nonlinear model (“equation 1) of aircraft at highgle of

Table 1. Design case studies.

((Vslall <Vselected <V
as follow:

min

variation of speed between stall spe¥(, () and minimum

controller to thecontrollable speed (¥, (1.05Vsy)) and a mean speed
).Different case studies “Table . 1” are

. Speed . . Gain Handling Quality
Case Altitude (ft) (ft/sec) Trim Conditions AS Pitch Levels
Linear o vim = 20.012 deg K. =0.55 Koyp = 6.7
1- Without Andnonlinear  So2 Level Sewm=0627deg  Ko=1.8 Koy = 5.7
Uncertainties  Linear 5000 o _yim = 23.840 deg K,=08 Kep = 12.9
And nonlinear 8¢ i = 0.081 deg Kq=23 Koy = 6.8
) : Linear o uim = 19.06 deg K, = 0.56 Koo = 6.95
ie'rr;fj'”g;gic Andnonlinear  So2 Level Seum=00989deg  Kq= 2.0 Ky = 6.15
Unceri/ainties Linear 5000 o vim = 22.59 deg K. =055 Kop = 12.95
And nonlinear 195 de wrim= -0.1669deg Kq=25 Koy = 6.85 Level |
) Linear 0 yim = 20.012 deg K, = 0.55 Koy = 6.7
fﬂeifsfz‘;;;fen . Andnoniinear SR Sevin = 0.627 deg Ko=1.8 Ky = 5.7
Hoise Linear =5 0 uim = 23.840 deg K,=08 Ko = 12.9
And nonlinear de wrim = 0.081 deg Kq=23 Koy = 6.8
i;nfggsas:ic Linear 5000 @ vim=23.840deg  K,=08 Kop = 12.9
Turbulence And nonlinear e trim= 0.081 deg Kq=23 Koy = 6.8
4.1.Casel
4.2.Case?2

Investigation about effect of linear and nonlinear

mathematical model to the designed controller. &tian
results are shown in “Fig 3”. As illustrated in ¢R3”, type of
modeling (linear / nonlinear), have the same tiegponse.

In this case, we make an investigation on timeaorse of
the designed SAS and pitch attitude controller fe t
presence of aerodynamics uncertainty. Simulatisalteare
shown in “Fig.4". As illustrated in “Fig.4”, the dgn SAS
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and pitch attitude controller are robust with redp&

aerodynamic uncertainty. Also, in “Fig.5”, effectf o
variation of altitude (from sea level to 30,000 &nd speed
(from V_,, <Vgew <V, at each altitude) on variation of

designed gain (e.g. gain scheduling) is presented.

43.Case3

In this case, we make an investigation on timeaesep of
the designed SAS and pitch attitude controller to
measurement noise and atmospheric  turbulence.

Measurement noise considers as an unstructured o T
uncertainties where caused by imperfections ins#esors BA— i

. 1} il il 1l 40 A0 a1} T a0 Qo 1m
used to measure the output, and usually occursgaeh T s

frequencies than the natural frequencies of theecldoop
system. To reduce the sensitivity of a closed-lsypgiem to
measurement noise (or to make the system robust wit
respect to measurement noise), the frequency respdithe
closed-loop system must have smaller gains at highe
frequencies. Band-Limited White Noise” block foreth
measurement noise is used in simulation to studyeffect

of the noise on flight control system. In this pageused
“Noise power” parameter of the “Band-Limited White
Noise” block to study this effect (i.e. we selealue of
0.0001 for noise power as “in reference [13]"). dl&"
illustrates the results for these cases from npmeer for
linear and nonlinear model together. As indicatetFig.6”,

the designed SAS and pitch attitude controller rateust
with respect to noise.

4.4, Case4

Finally, we make an investigation about effect of
atmospheric turbulence on pitch hold, where atmesph
turbulence implementation are based on Dryden terive
spectrum and handling qualities levels are defifredn
MIL_F_8785C as “in references[14 to 17,20]". Inststudy
Dryden turbulence is generated with the following
parameters: flight altitude (H=5000 ft), velocity=195
ft/sec), and moderate intensity. “Fig. 7" illuseathe results
for these cases from Dryden turbulence with moederat [ S T S S S N S
intensity for linear and nonlinear model together. bW W 34 T & W@ w1

thetn [degres
B =

W
w g

=
o

=
-

5. Conclusion and Discussion

In this paper, SAS and pitch attitude control fonadern
type fighter has been developed based on clas§ital
techniques. It is demonstrated in numerical sinmutetthat
desirable handling qualities are achieved for Hidhkhity
F-16 model over a wide nonlinear flight region. 8iation
results show that the designed SAS and contraléerabust
in time response with respect to aerodynamic uac#ies,
measurement noise and atmospheric turbulence. Siece
controller parameters are computed in advance aed t
tuning procedure is limited only to the cascadeng#ie
framework also provides an efficient and practivaly for
real-time P| parameter tuning.

Q(deghec)

Figure 3. Aircraft responses for Case 1 (V=195 ft/sec ; H: Sea Level).
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including aerodynamic uncertainty.
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