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Abstract: This paper performs a semi-analytic study of thegokc orbits around stable triangular equilibriyraints
when the three participating bodies are modeleabtete spheroids, under effect of, radiation ofrtteén masses and small
change in the Coriolis and centrifugal forces. Tdtigly generalizes the one studied by AbdulRahesrSingh, with the
inclusion that the third body, due to rapid spimniohanges its shape from being a sphere, to ateofppheroid. The orbits
around these points are ellipses with long andtgheniodic orbits. The period, orientation, eccigities, the semi-major
and semi-minor axis of the elliptic orbits have beéven. The consideration of the particle as datelspheroid affects all
these outcomes. We clarify the discrepancies betweestudy and related previous studies.
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1. Introducti particle of infinitesimal mass, as an oblate spitero
- Introauction Rambaux [9] studied the rotational motion of theosel

The restricted three-body (RTBP) has been generhliz /ar9est body “Vesta” of the main asteroid belt,duhsn its
in the past years to include the case when oneotr b orbital perturbatlor!s and its _Iarge trlgxw_sll shape. )
primaries are radiation source. Studies of thiglkicclude ~_ Due to the rotational motion, periodic orbits existhe
among many, Radzievskii [8], Simmons et al [13hdbi RTBP, long and short periodic orbits are found atbthe
and Leke [L7]. Further generalizations are the aaisen equilibrium points. Elements that could be usedescribe

the shapes of the participating bodies are noteperf the motion of test particle relative to the primaapd
spheres. Though, the shapes of the bodies in tssichl secondary bodies are categorized as orbital ancbrizital

RTBP are assumed to be spherical, but we find ithat _elements. Ar_wgular momentum and total energy are the
nature, several of these bodies are either obfatgaxial.  INtégrals available to measure the shapes and eizge
The Earth, Jupiter, Saturn, Ragulus, Neutron stagsblack orbits but are not directly observable. Therefore,
dwarfs are oblate. Some studies which have cormidigre  €ccentricities, inclination and semi major axeshef orbits
non sphericity of the primaries include: SubbaRam a &€ usgd to determine the shapes, orientation ized ef
Sharma [23], Elipe and Ferrer [3], Sharma et a],[Sihgh  the Orbits.

[15], Singh and Leke [19] and Singh [16]. Some fdse S_zel_)ehely_[24] gave a cqmplete result regarding the
cited studies have also included one or more pamme periodic motion of planar circular RTBP. Sharma][11

aside the bodies not being a sphere. examined the linear stability of the restricted hjeon in
AbdulRaheem and Singh [1] studied the case when bot'hich the larger primary body is a source of rada@and
primaries have the shape of an oblate spheroid aff§e Smaller one is an oblate spheroid. The ecceytof
radiating, under effect of small perturbationstie Coriolis  the retrograde elliptical periodic orbits was showm
and centrifugal forces. Singh and Leke [20] modifiae  NCrease with oblateness and decrease with radiédice.
problem studied in AbdulRaheem and Singh [1] byBY USing second order parametric expansions, thiés
assuming that, the masses of the primaries vary tvite  Of Periodic orbits generated from the inner cotine
according to a law of mass variation. The same lprob €auilibrium point in a binary system were numeiical
was extended by Singh and Haruna [22], by takimgtélst determined by Ragos et al. [10]. Perdios [5] stuidigtical
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symmetric periodic orbits in the photogravitatior®IBP  the radiation factor of the larger primary and givey the

in which the first primary is a source of radiatidrater, expressiorF,; = Fy (1‘Qi) ‘0< (1‘Qi)<< 1Wherngi and
Perdios and Kalantonis [6] modified the problem by . o o
considering the first primary to be an oblate spherThe  Fpi @re respectively the gravitational and radiation
combine effect of radiation, perturbations and taslass on pressure forcesg =1+0 ; O<<1 , ¢ =1+0 ; 0<<1 are
the periodic orbits was carried out by AbdulRahe@md arameters for the Coriolis and centrifugal forces
Singh [2]. Singh and Begha [18] looked at the peablof
the periodic orbits when the larger and smallempries
are triaxial and oblate bodies respectively undfaces of
small perturbations in the Coriolis and centrifufiaices.
Perdiou et al [7] studied the periodic motionshe spatial c:zg—(x2+y2) (3)
Chermnykh’s restricted three-body problem. Kishod a

Kushvah [4] considered the periodic orbits in thewhereCis the Jacobi constant.

generalized photogravitational Chermnykh-like pewbl Now, the triangular equilibrium points are giveringh
with power law profile, while Singh and Leke [21] and Haruna [22]):

examined the periodic orbits of an axisymmetrictipkar L L L

under the gravitational forces of a radiating biggemary — x=«-5+¢ 3[5(1_‘41)_5(1_'42)_54’%('61‘AQ)}

respectively to which small perturbations and[]' are
given.
Equations (1) admits the Jacobi integral

and an oblate smaller one when they are surroubgeal A % (4)
belt. =0l 2 y{g(l—oa>+;(1—qz)+(a+Az)—””2(A1+A2+2A3>}
s | 4-yl3

Because of the ambiguity of the calculations inedly

when dealing with up to five parameters of the eystwe The characteristic equation and its roots are given

observe that some of these studies are mathenh;sltica]lespectively as (Singh and Haruna [22])
flawed. ' '

In this paper, we review and then extend the pduyer A4 —al2+b=0 (5)
AbdulRaheem and Singh [2] by assuming that thed thir
body is modeled as an oblate spheroid. The pap@there
organization is as follows; section 2 and 3 hidhighe

equations of motion, location of the triangular nisiand b=30 _4_85_6(A1+A2)+%1+2A1+2A2+A3_,U(AL_AZ)}
the periodic orbits, respectively. In sections 4 eiscuss
the elliptic orbits, its orientation, eccentricieand axes, 3
and we conclude the paper in section 5. ¢ :Z'L’(l_”)[9+3g(ﬁ+A2)+le~"+ A1-a)+ 21-,)+207]
. . . and
2. Equations of Motion and Triangular
Equilibrium Points Mz = £SpAss = 28, (6)

Let m and m, be the masses of the primary a”dwheresfz _ ERN A=b?-4c
secondary stars, respectively, amdbe the mass of the 2
third body. Using dimensionless variables, the &gna of

motion of the third body in a barycentric rotating3. Periodic Orbits
coordinate system, can be written (Singh and HafR2p

as In the stable region, the roots (5) are pure imagwin
) . ) _ ) roots and so the motion is bounded. In this cagehawve
X=2my=Q,,y+2mx=Q,,2=Q, (1) two harmonic motions, given by
0 :@[(l_ﬂ)erer]Jr Gll-p), G, GAL-4), dhu , AlL-H), Au 2) ¢ =Cycosst +§sinst +C, cosst + S, sinsyt
2 T n r 2r? 2r3 a2 = = I~ = .
n =C,cosst + S sinst +C, coss,t + S, sins,t
where n? :1+gAL+gA2 where
2 2 2 2 2 2 2 2 1
7 =(x=pf +y*+2% 1 = (x-u+1f +y* +z 27 117 3 3 331) |2
= - R N —11- —\1- —_— 7
M is the mass parametdn, is the mean motion of the 3 [”(1 ”){ 2" a (A‘“LAZ)“LQA‘”LZ(1 0‘I)Jrz(l %)+ 2 H ™
rimaries;r,and r, are distances of the test particle from
primaries;land part sz{1—35+su-(LQS,,-L”,IZJM(E-LZQ,HL”,;]AZ-3(1-3,“3,,2)/:3
the prlmar|es.A(| = 12,3) are oblateness coefficients of 2 40 4 2 47 4 . ®)
the three bodies respectively and are assumed teetye _%1(1-,,)-3(1-oa),l(l-/,)-g(l-ub)y(l-y)—%y(l—y)]E

small.R is the dimensional distance between thejpis
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s, is the frequency of the long periodic orbits wislgs Equation (8) is in quadratic form, and shows the t
for the short periodic orbits. The Periodic orbits around the triangular poiate elliptical.

coefficientsC,,S,,C;, S, andC,,S,,C,, S, are the long and 4.1. Orientation
short periodic terms, respectively. )
If we express equation (8) as

4. Elliptic Orbits

Now, the expansion of the force functi@nharound the where
triangular point:{x, y) is expressed as

0=0°+Q° [ZJ+Q0 [’72]_'_(20{,74_0(53 3) ©)

I

Bzzﬁ[i—gw[%—lﬁfujﬂ{g %BﬂjAﬁ[;ijs—[%%uj(l—ql) [3+6uj(l a2 ) [11 11,Uj[|1

Q=B -Byén +Byp® +B, (10)

12 6

9 33 1.3 1.3 7 This is equivalent to the rotation of the coordéat
B,==+—(A + +| === - ===y la- +—0
° 8 16(A‘ AZ) 2% ( ﬂj( ~a) (2 4/1)( %) 8 system & and 7 through anglea . Therefore, we
B4—g+[§ Ey]m( +2 y]A2+ AS—(l—IJ)(l—Ch)—p(l—qa)+%E( selecta such that the terms containigg in the force

function Q vanishes. The new force function in its
We introduce the variablésand by the transformation quadratic has the form:

&=&cosa -1 sina a1 Q=B¢E?+B,jj*+B; (12)
=Zsina +77 cosa

Where
3 3/3

Bl:§+zsinza—T(1— 2,u)sm2a+[i7 3;1+[3+3,ujsm a- %[% Ey]stu}Al

3,3, 15 3 J3(7 13 3 V3(1
—+— sm a-—|—--=u|sin2a +| Zsin?a - X2 =+ y|sin2a
16 2" 2[8 4”) }Az {2 2[ ”j ]AS

i
+{[ % % co2a +j[1 ¥ lﬂj sm2a}( o)+ [[; 3”] coa + J;[ ;+ éyjsmm}(l )
E 11/5(1 24)

sina - smzﬂ o

1
4

= _3.3 3/3 27 3 3,3 N3(19 13
B,==+= +—=(1- 204 | ——-=pu+|=+= a+—| —=—-= 2a
) cos a (1= 2u)sin2a { U ( ,ujcosz ( p)sm :IA1

+|:%+g;1+[1—5 —,ujcos2 +%[g lj;/)sta:lAz+|:§cosza+§[§+;xjsin2ﬂ}A3
+[(%—guj00520—§[1+ly]sta}(l ql)+|:[—%+%)co§a+§[é—%)sin2a:l(l—qz)
+|:§+%cosza Ui-2uN3 2;1)\/7 sm2a}

§3 =B,
2 {3+3D’+(— 3;1]A1+( +3;1JA2+3A3+}]+7,U(1—/1)
The principal axes of the curve of zero velocitye ar 117 H1-q,) 3300 (14)
oriented according to “1(1‘”)[ (A + ay)+om +2 S+ +T}=°
tan2a = ({1 2;1+ § 1—6/1+4/1 ]Aa [ ‘%/“"szAz [g 156 jAg, Equation (14) is quadratic id and has the roots:
(13)
N R SO g SR e ] oo (1R e e b
L . ‘%ﬂ(l‘ﬂ)(l‘oa)‘aﬂ(l‘ﬂ)(l‘CIz) ( i'+llujﬂ
4.2. Eccentricities of the Ellipses

Now, the corresponding characteristics equatiorthef Ay = pl- u)[9+§(/sl+A2)+3A5+ (- oa)+£LIj +1(1—q2)}
Jacobi integraC = 2Q s 22
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The eccentricities are given (Szebehely [24]) by, here 5 = 25 (i - 12)
equations s+ A
q:(].—dlz)% (16) Substitutings, , S, and A, in the latter expression,

ignoring products and higher powers of very small
quantities, we get the following respectively

& =3u-198 -2y 39 )\ +Ap-222 s A 3P - -a) S Srsan @)

and is found respectively by substituting the respextiv
equations of (17) in (16) to get

2
=19 l_@j (9 o7, 507;1} [3 57u , 294u ]AQ_[§+@_273{1J

4 16 2 8 16 8 8 16 4 4 8 16
11312 13;1 63u  63u° 3 49y | 69547

- =+ 1- + 1-qy)+|1+——~ O-=+——+ o
[8/1 ; ]( @)- [ u (1-a,) 4 4 2t T m

Hence, the eccentricity of the long and short peddit

6= 1= o+ + (e 3507 o~ 2{u- 22 + (w1302 s - S - - )

‘%ﬂ( -pL-a)- ﬂ(1-34#)D
18
ez=£{1+ uli- /4)+81/z2+[§ T L A R e g (18)
113 13, 2 21y 2l 1. 49 . 695/°
(e o B Yo 242 B o 242,987
—ﬁ+1—2+ 1,2, 8, ]'-¢-:I'-¢-—2 {21, 7.
4.3. Semi-Major and Semi-Minor Axes o" 2{1 -3 3 (5 S ool o (23)
-[§+gﬂ-%lﬂzj(l @)~ (2+7/1 41/12)(1 Q)+ ( 5+2/1 76/12]D]
The lengths of the semi-major axig; and the semi-
minor axis, b of the long and short period are obtainedbf@{l—%1 S22 [ P -y ij[ == Ll)iu == ZJA2+
from the respective relations below (;% -2 sz[ 0.8, Zj(l“h)‘(fzg I e Lu j(l_qz) (24)
8 _158 410 , 41,9 367,
=2 (ga2 +ng) b = (gFP +n)2=12) (1) +[r3-13u oo )]
where &, , 1], are given in (3) as initial conditions 5. Discussion and Conclusion
(Szebehely[24]). We have generalized the study of the periodic srbft
Then, the model studied by AbdulRaheem and Singh [2], whe
the test particle is an oblate spheroid. This pépalso the
gg:711[1_4,”4,,2+(2_4,,)A1+(_2+4,,)A2+(_g+g,,j(1 @)+ [5 5,,](1 qz)} study of the periodic orbits of the triangular gsistudied
[ o 4 a4 4 8 (20) by Singh and Haruna [22]. Clearly, the equationsofion
/7§=Z{1—§(A1+A2)+§As ~(-q)- (l d2)~ 55'} of our studies and those of AbdulRaheem and Sirajh [

differ only due to oblateness of the test partinl¢he force

Substitutingxiz(i :l2) and equations (20) in equationsf”n‘?t,ior? (2). .Also,' the positions of the triangular
(19), we get the following equations respectively equilibrium points differ only because of the shayehe
' test particle. These equations become the same titgen
:ﬁ{ L1 20 (3420, (37 1 .2, (19 1 test particle is a sphere
2"l s w-4) [15 sﬂjA‘ [15 5u 5”]A2 [ ]Ag 21) Now, equations (7) and (8) are the frequencieshef t

15 5u

(g i_iﬂj( —%)-(i+iy+ij(1 qe)-(g+i] } long and short period orbits, respectively. Theffedifrom
45 54 15 45 15 1 9 1% those in AbdulRaheem and Singh [2], because of the
e 6337 (24 103 2017 4 1es 3308 inclusion that the test particle is an oblate splieBut, we
2= [ 26” = +(E'E T ij(l—g—%u—gﬂzjw observe that the coefficients of the oblateneshembigger
[2+6—3y—1—62y2JA5 (E 5 7}(2](1_0&) [3 1,3 3, ](1 @) 22) primary are bo_th incorrect. The coeﬁmentsnbigteness
137713 39 39 133 > of the test particle worked out by us are same witise of
_[g_ﬁ_ﬂ&zz]u{g_%Jrﬂ]u} Singh and Leke [21]. When the bodies are spheriuath,
B BB 71313 radiating and no small change in the Coriolis and

centrifugal forces, we havg- 3y3u ands, -1-27,,; showing
2 8
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thats, >s. (2]
We see from equation (9) that the orbits are @bt
while equation (10), give the orientation of théiorWe [3]
note that the first coefficient in the equation asgne with [4]
that in AbdulRaheem and Singh [2], except for wsdems
like a typographic error in the coefficient of thblateness
of the bigger primary. However, the coefficientsthoé term  [5]
containing triaxiality of the bigger primary in tigaper by [6]
Singh and Begha [18] are equally erroneous. Insteond
coefficient of (10), the term containing a smallobe in
the centrifugal in AbdulRaheem and Singh [2] aféedent [7]
while the other terms are same with ours. In Siagd
Begha [18], the all the terms there are a founolirs when [8]
0, =0, . In the third coefficient, our results are in [9]
accordance with that in AbdulRaheem and Singh [&] b
again the term containing the small change, diff$& [10]

observe that, the second, third and fourth coeffits in
equation (10) contain an additional term containinqll]
oblateness of the test particle. Our results waégn (10)
fully agree with the corresponding terms in tho$&imgh
and Leke [21]. The same disparities are also olkesem
equations (12).

Equation (13) demonstrates that the orientatiothese
orbits may increase. This will depend on the patarseof
the system. If an increase or decreases occur,thie will
produce a change in the orientation of the ordisgthe

(12]
(13]

[14]
[15]
thae)
[17]
[18]

& coordinate. Some differences are also noticed @

eccentricities of the long and short periodic @rhithich
are given in equations (18), with those in, AbdiiBam
and Singh [2], and Singh and Begha [18]. Thougkjdss
the oblateness of the test particle, the valuesuirs and
those in AbdulRaheem and Singh [2], depend on thesm
ratio, radiation pressure forces, oblateness optimaries,
and small perturbations. The same thing can be azodit
the semi-major and semi-minor axes of the long stmatt
period orbit given in equations (21) to (24). Thaye
affected by oblateness of the test particle.

Finally, we have followed the same pattern as jouevi [22]
studies and have in particular retained the fesintof the
product 42 (1- i) and 42(1- 4)? done in Singh and Leke [21]. [23]

(19]
(20]
(21]

[24]
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