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Abstract: This paper performs a semi-analytic study of the periodic orbits around stable triangular equilibrium points 
when the three participating bodies are modeled as oblate spheroids, under effect of, radiation of the main masses and small 
change in the Coriolis and centrifugal forces. This study generalizes the one studied by AbdulRaheem and Singh, with the 
inclusion that the third body, due to rapid spinning, changes its shape from being a sphere, to an oblate spheroid. The orbits 
around these points are ellipses with long and short periodic orbits. The period, orientation, eccentricities, the semi-major 
and semi-minor axis of the elliptic orbits have been given. The consideration of the particle as an oblate spheroid affects all 
these outcomes. We clarify the discrepancies between our study and related previous studies. 
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1. Introduction 
The restricted three-body (RTBP) has been generalized 

in the past years to include the case when one or both 
primaries are radiation source. Studies of this kind include 
among many, Radzievskii [8], Simmons et al [13], Singh 
and Leke [17]. Further generalizations are the case when 
the shapes of the participating bodies are not perfect 
spheres. Though, the shapes of the bodies in the classical 
RTBP are assumed to be spherical, but we find that in 
nature, several of these bodies are either oblate or triaxial. 
The Earth, Jupiter, Saturn, Ragulus, Neutron stars and black 
dwarfs are oblate. Some studies which have considered the 
non sphericity of the primaries include: SubbaRao and 
Sharma [23], Elipe and Ferrer [3], Sharma et al [12], Singh 
[15], Singh and Leke [19] and Singh [16]. Some of these 
cited studies have also included one or more parameters 
aside the bodies not being a sphere. 

AbdulRaheem and Singh [1] studied the case when both 
primaries have the shape of an oblate spheroid and 
radiating, under effect of small perturbations in the Coriolis 
and centrifugal forces. Singh and Leke [20] modified the 
problem studied in AbdulRaheem and Singh [1] by 
assuming that, the masses of the primaries vary with time 
according to a law of mass variation. The same problem 
was extended by Singh and Haruna [22], by taking the test 

particle of infinitesimal mass, as an oblate spheroid. 
Rambaux [9] studied the rotational motion of the second 
largest body “Vesta” of the main asteroid belt, based on its 
orbital perturbations and its large triaxial shape. 

Due to the rotational motion, periodic orbits exist in the 
RTBP, long and short periodic orbits are found around the 
equilibrium points. Elements that could be used to describe 
the motion of test particle relative to the primary and 
secondary bodies are categorized as orbital and non orbital 
elements. Angular momentum and total energy are the 
integrals available to measure the shapes and sizes of the 
orbits but are not directly observable. Therefore, 
eccentricities, inclination and semi major axes of the orbits 
are used to determine the shapes, orientation and sizes of 
the orbits. 

Szebehely [24] gave a complete result regarding the 
periodic motion of planar circular RTBP. Sharma [11] 
examined the linear stability of the restricted problem in 
which the larger primary body is a source of radiation and 
the smaller one is an oblate spheroid. The eccentricity of 
the retrograde elliptical periodic orbits was shown to 
increase with oblateness and decrease with radiation force. 
By using second order parametric expansions, the families 
of periodic orbits generated from the inner collinear 
equilibrium point in a binary system were numerically 
determined by Ragos et al. [10]. Perdios [5] studied critical 
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symmetric periodic orbits in the photogravitational RTBP 
in which the first primary is a source of radiation. Later, 
Perdios and Kalantonis [6] modified the problem by 
considering the first primary to be an oblate spheroid. The 
combine effect of radiation, perturbations and oblateness on 
the periodic orbits was carried out by AbdulRaheem and 
Singh [2]. Singh and Begha [18] looked at the problem of 
the periodic orbits when the larger and smaller primaries 
are triaxial and oblate bodies respectively under effects of 
small perturbations in the Coriolis and centrifugal forces. 
Perdiou et al [7] studied the periodic motions in the spatial 
Chermnykh’s restricted three-body problem. Kishor and 
Kushvah [4] considered the periodic orbits in the 
generalized photogravitational Chermnykh-like problem 
with power law profile, while Singh and Leke [21] 
examined the periodic orbits of an axisymmetric particle 
under the gravitational forces of a radiating bigger primary 
and an oblate smaller one when they are surrounded by a 
belt. 

Because of the ambiguity of the calculations involved, 
when dealing with up to five parameters of the system, we 
observe that some of these studies are mathematically 
flawed. 

In this paper, we review and then extend the paper by 
AbdulRaheem and Singh [2] by assuming that the third 
body is modeled as an oblate spheroid. The paper 
organization is as follows; section 2 and 3 highlight the 
equations of motion, location of the triangular points and 
the periodic orbits, respectively. In sections 4, we discuss 
the elliptic orbits, its orientation, eccentricities and axes, 
and we conclude the paper in section 5. 

2. Equations of Motion and Triangular 
Equilibrium Points 

Let 1m and 2m be the masses of the primary and 

secondary stars, respectively, and m be the mass of the 
third body. Using dimensionless variables, the equations of 
motion of the third body in a barycentric rotating 
coordinate system, can be written (Singh and Haruna [22]) 
as 
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µ is the mass parameter, n  is the mean motion of the 

primaries; 1r and 2r are distances of the test particle from 

the primaries. ( )3,2,1=iAi  are oblateness coefficients of 

the three bodies respectively and are assumed to be very 

small.R is the dimensional distance between them. 1q is 

the radiation factor of the larger primary and given by the 

expression ( )igipi qFF −= 1 : ( ) 110 <<−< iq where giF and

piF  are respectively the gravitational and radiation 

pressure forces. ∈+= 1φ ; 1∈<<  , ∈′+= 1ψ ; 1<<∈′ are 

parameters for the Coriolis and centrifugal forces 
respectively to which small perturbations ∈ and∈′ are 
given. 

Equations (1) admits the Jacobi integral 

( )222 yxC ɺɺ +−Ω=                              (3) 

whereC is the Jacobi constant. 
Now, the triangular equilibrium points are given (Singh 

and Haruna [22]): 
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The characteristic equation and its roots are given, 
respectively, as (Singh and Haruna [22]), 
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3. Periodic Orbits 
In the stable region, the roots (5) are pure imaginary 

roots and so the motion is bounded. In this case, we have 
two harmonic motions, given by 
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1s is the frequency of the long periodic orbits while2s is 

for the short periodic orbits. The 

coefficients; 111 ,, CSC , 1S and 222 ,, CSC , 2S are the long and 

short periodic terms, respectively. 

4. Elliptic Orbits 

Now, the expansion of the force functionΩ around the 
triangular points( )yx, is expressed as 
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Equation (8) is in quadratic form, and shows that the 
periodic orbits around the triangular points are elliptical. 

4.1. Orientation 

If we express equation (8) as 
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We introduce the variablesξ andη by the transformation 
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This is equivalent to the rotation of the coordinate 
system ξ and η through angleα . Therefore, we 

selectα such that the terms containingηξ in the force 

function Ω vanishes. The new force function in its 
quadratic has the form: 
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The principal axes of the curve of zero velocity are 
oriented according to 

( ) ( ) 



∈′






 −+−






 +−+−






 +−+








 −−










 +−−






 +−+−=

µµµµµ

µµµµµµα

9

16

9

8
14

9

44

9

16
14

9

28

9

8

3

16

3

4
4

3

8

3

4
4

3

16

3

8
2132tan

2
2

1
2

32
2

1
2

qq

AAA

  (13) 

4.2. Eccentricities of the Ellipses 

Now, the corresponding characteristics equation of the 
Jacobi integral Ω= 2C is 
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Equation (14) is quadratic in λ and has the roots: 
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The eccentricities are given (Szebehely [24]) by 
equations 
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Substituting 1s , 2s  and 1λ in the latter expression, 
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Hence, the eccentricity of the long and short period orbit 

is found respectively by substituting the respective 
equations of (17) in (16) to get 
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4.3. Semi-Major and Semi-Minor Axes 

The lengths of the semi-major axis, ia and the semi-

minor axis, ib of the long and short period are obtained 

from the respective relations below 
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1 2
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where 0ξ , 0η are given in (3) as initial conditions 

(Szebehely[24]). 
Then, 
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Substituting ( )2,12 =iiχ  and equations (20) in equations 

(19), we get the following equations respectively 
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5. Discussion and Conclusion 
We have generalized the study of the periodic orbits of 

the model studied by AbdulRaheem and Singh [2], when 
the test particle is an oblate spheroid. This paper is also the 
study of the periodic orbits of the triangular points studied 
by Singh and Haruna [22]. Clearly, the equations of motion 
of our studies and those of AbdulRaheem and Singh [2] 
differ only due to oblateness of the test particle in the force 
function (2). Also, the positions of the triangular 
equilibrium points differ only because of the shape of the 
test particle. These equations become the same when the 
test particle is a sphere 

Now, equations (7) and (8) are the frequencies of the 
long and short period orbits, respectively. They differ from 
those in AbdulRaheem and Singh [2], because of the 
inclusion that the test particle is an oblate spheroid. But, we 
observe that the coefficients of the oblateness of the bigger 
primary are both incorrect.    The coefficients of oblateness 
of the test particle worked out by us are same with those of 
Singh and Leke [21]. When the bodies are spherical, non 
radiating and no small change in the Coriolis and 

centrifugal forces, we have 
2

33
1

µ
=s

 

and µ
8

27
12 −=s ; showing 
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that 12 ss > . 

We see from equation (9) that the orbits are elliptical 
while equation (10), give the orientation of the orbit. We 
note that the first coefficient in the equation are same with 
that in AbdulRaheem and Singh [2],  except for what seems 
like a typographic error in the coefficient of the oblateness 
of the bigger primary. However, the coefficients of the term 
containing triaxiality of the bigger primary in the paper by 
Singh and Begha [18] are equally erroneous. In the second 
coefficient of (10), the term containing a small change in 
the centrifugal in AbdulRaheem and Singh [2] are different 
while the other terms are same with ours. In Singh and 
Begha [18], the all the terms there are a found in ours when 

21 σσ = . In the third coefficient, our results are in 
accordance with that in AbdulRaheem and Singh [2] but 
again the term containing the small change, differs. We 
observe that, the second, third and fourth coefficients in 
equation (10) contain an additional term containing 
oblateness of the test particle.  Our results in equation (10) 
fully agree with the corresponding terms in those of Singh 
and Leke [21]. The same disparities are also observed in 
equations (12). 

Equation (13) demonstrates that the orientation of these 
orbits may increase. This will depend on the parameters of 
the system.  If an increase or decreases occur, then this will 
produce a change in the orientation of the orbits along the 

ξ coordinate. Some differences are also noticed in the 

eccentricities of the long and short periodic orbits which 
are given in equations (18), with those in, AbdulRaheem 
and Singh [2], and Singh and Begha [18]. Though, besides 
the oblateness of the test particle, the values in ours and 
those in AbdulRaheem and Singh [2], depend on the mass 
ratio, radiation pressure forces, oblateness of the primaries, 
and small perturbations. The same thing can be said about 
the semi-major and semi-minor axes of the long and short 
period orbit given in equations (21) to (24). They are 
affected by oblateness of the test particle. 

Finally, we have followed the same pattern as previous 
studies and have in particular retained the first term of the 
product ( )µµ −12 and ( )22 1 µµ − done in Singh and Leke [21]. 
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