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Abstract: Fish catch prediction is an important problem in the fisheries sector and has a long history of research. The 

main goal of this paper is to create a model and make predictions using fish catch data of two fish species. Among the most 

effective and prominent approaches for analyzing time series data is the methods introduced by Box and Jenkins. In this 

study we applied the Box-Jenkins methodology to build Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model for monthly catches of two fish species for a period of five years (2007 – 2011). The seasonal ARIMA (1, 1, 0)(0, 0, 

1)12 and SARIMA (0, 1, 1) (0, 0, 1)12 models were found fit and confirmed by the Ljung-Box test  and these models were 

used to forecast 5 months upcoming catches of Trichiurus lepturus (Ikan Selayor) and Amblygaster leiogaster (Tambun 

Beluru) fish species. The result will help decision makers to establish priorities in terms of fisheries management. 
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1. Introduction 

The fisheries sector plays a vital role in the Malaysian 

national economy. It contributes to the national gross 

domestic product (GDP), as it also a source of employment, 

foreign exchange and a cheap source of protein supply in 

the country. Fish constitutes 60-70% of the national animal 

protein intake, with per capita consumption of 47.8 kg per 

year. The marine capture fishery in Malaysia covers a total 

area of 547,200 km2 which is categorized into coastal  

fisheries and deep-sea fisheries [1]. Trichiurus lepturus and 

Amblygaster leiogaster are among the most important fish 

species found in Malaysian waters. In fact, the total catch 

for these species alone contributes 1.57% to GDP and 

which also provides employment for more than 79,000 

fishermen and 20,000 fish farmers [1].  

Modeling and forecasting fish catches have a long 

history of research, for example, Efthymia [2] modeled and 

forecasted the monthly pelagic production of fish species in 

the Mediterranean Sea during 1990–2005 using the 

univariate and multivariate autoregressive integrated 

moving average (ARIMA) models. Stergiou et al. [3] 

indicated that seasonal ARIMA(1,0,1)(0,1,2)12 models 

fitted and forecasted the monthly pelagic fish catches in 

Hellenic waters, the model provided low value of Bayesian 

information criteria (BIC), medium standard error and 

mean absolute percentage error. Chi-Lu and Su-Zan [4] 

evaluated the  efficiency of Box and Jenkins ARIMA 

model in the short-term forecasting of the fishery, using the 

time series of monthly catch and the monthly catch per unit  

effort (CPUE) of the South Atlantic albacore harvested by 

the Taiwanese long-line fishery from January 1968 to   

December 1993. The model provides a useful measure of 

the likely ranges of catch and CPUE for the management of 

albacore stock in the South Atlantic Ocean. In a study by 

Georgakarakos et al. [5], time series analysis techniques 

(ARIMA models), artificial neural networks (ANNs) and 

Bayesian dynamic models were used to forecast annual 

Loliginid and Ommastrephid landings recorded from the 

most important fishing ports in the Northern Aegean Sea 
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(1984–1999). The techniques were evaluated based on their 

efficiency to forecast and their ability to utilize auxiliary 

environmental information. Applying a “stepwise modeling” 

technique, namely by adding stepwise predictors and 

comparing the quality of fit, certain inferencesconcerning 

the importance of the predictors were made. The ARIMA 

models predicted the test data remarkably well, after they 

were first differenced to obtain stationarity. The time series 

approach is generally preferred for its fitting and 

forecasting accuracy for fisheries production [6-7, 2]. In 

Malaysia, fish catch statistics has only recently been given 

attention by the research bodies. As such, in 2008, Shitan, 

et al. [8] has used the time series analysis to forecast 

demersial and pelagic marine fish production in Malaysia. 

Using ARFIMA and ARIMA they build a model to predict 

demersial and pelagic marine fish catch, respectively. 

Unfortunately, no other predictive model has been reported 

afterwards. Therefore, the objective of this paper is to build 

a model to predict monthly catch of five years fish data 

following a different methodology.   

2. Materials and Methods 

2.1. Data Collection and Analysis 

The time series data analyzed in this paper corresponds 

to the monthly fish catch of Trichiurus lepturus and 

Amblygaster leiogaster for the period of five years 

2007-2011 (http://www.dof.gov.my/en/fishery-statistics) [9]. 

Trichiurus lepturus Linnaeus, 1758 is a member of the 

cutlassfish family, Trichiuradae, it is a long, slender fish 

found throughout the tropical and temperate waters of the 

world. They grow to over 2m in length and can reach 5.0 

kg in 15 years [10]. Amblygaster leiogaster 

(Valenciennes,1847) is from clupeidae family and it 

currently contains three species, they grow from 18cm to 

23cm [11]. Total fish catch data are catches using various 

methods including purse-seine, beach seine and long line 

methods, and they are measured in tons [1].  

In this paper we tend to develop a suitable forecasting 

models Box-Jenkins methodology, because it is flexible 

enough to allow choosing the best model out of complete 

model using a designated and  acceptable criteria, and it 

has the ability for error measurement. All statistical 

analysis were run using R software. 

2.2. Time Series Decomposition 

A time series is a stochastic procedure that describes the 

evolution of the random variable. It consists of four 

different components as follows [12]; 

� Trend (T): A trend is a long-term component that 

represents a growth or a decline of a time series over 

an extended period of time. 

� Seasonal component (S): This term of seasonality is 

used for time series defined at time intervals which are 

fractions of a year. It is a pattern of change that repeats 

itself from year to year. 

� Cyclical component (C): Changes in time series 

sometimes show a wave-like fluctuation around a 

trend, which shows the possible existence of 

periodicity with longer intervals. 

� Irregular component ( ε ): This is a part of a time 

series represented by residuals, after the 

above-mentioned components have been removed. 

Any time series data that contained the above 

components is usually described using the following in (1). 

t t t t ty T S C ε= + + + .                 (1) 

2.3. Box-Jenkins Methodology 

Box-Jenkins [13] proposed a methodology for modeling 

and forecasting time series data, wherein the models are the 

family of autoregressive integrated moving average models, 

or ARIMA models. These are linear, stochastic models that 

can describe fairly complex dynamics in a time series. 

Basically, there are three phases included in Box-Jenkins 

Methodology: model identification, parameter estimation, 

and diagnostic checking.  

 

Figure 1. Box-Jenkins model building flow chart. 

Note: ACF: A utocorrelation Function; PACF: Partial Autocorrelation 

Function. 

2.4. Stationarity 

In order to use any time series data for analysis using 

Box-Jenkins methodology, the time series should meet the 

stationarity conditions. A time series 
t

X  is said to be 

weakly stationary or wide-sense stationary or covariance 

stationary if it fulfills the following three properties [14 ]. 

1. Mean is constant over time: [ ]tE X µ= ,for all t. 

2. Variance is constant over time: 

2[ ] [( )t t XVar X E X µ σ= − =  for all t.      (2) 
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3. Covariance between any two values of the series   

depends only on their distance apart in time (k) not on 

their  absolute location in time {t}; 

,[ ] [( )( ) ( )t t k t t kCov X X E X X kµ µ γ− −= − − =  (3) 

2.5. Seasonal ARIMA Model 

A time series is said to be seasonal if there exists a 

tendency for the series to exhibit a periodic behavior after 

certain time interval. The usual ARIMA models cannot 

really cope with seasonal behavior; it only model time 

series with trends. Seasonal ARIMA models are formed by 

including an additional seasonal terms in the ARIMA 

models and are defined by seven parameters. Following 

Fadhilah & Ibrahim [12], the seasonal ARIMA denoted by 

ARIMA (p, d, q)(P, D, Q)s is given as in (4). 

  (4)
 

where 

2

1 2(1 ... )p

pB B Bφ φ φ− − − −  and 2

2(1 ... )s s Ps

PB B Bβ β β− − − − are 

the autoregressive part of order p and seasonal 

autoregressive part of order P respectively. 
2

1 2(1 ... )q

qB B Bψ ψ ψ− − − −
 

and 2

2(1 ... )s s Qs

QB B Bθ θ θ− − − −  

represents the moving average part of order q and seasonal 

moving average part of order Q respectively. (1 )dB−  is the 

differencing polynomial of order d and (1 )s DB−  
the 

seasonal differencing polynomial of order D. Finally, s is 

the period of the seasonal pattern appearing. The seasonal 

ARIMA is to look at what are the best explanatory 

variables to model a seasonal pattern.  

2.6. Ljung-Box Test 

Ljung and Box [15] proposed a Q-Test called Ljung–Box 

test which is commonly used in linear models following 

Box-Jenkins methodology. This test is applied to the 

residuals of a fitted model, not the original series, and in 

such applications the hypothesis to be tested is that the 

residuals from the model have no autocorrelation. Perhaps 

it performs a lack-of-fit hypothesis test for model 

misspecification based on the Q-statistic given as: 

2

1

ˆ
( 2)

( )

L
j

j

Q N N
N j

ρ
=

= +
−∑  

Where N = sample size, L = number of autocorrelation 

lags included in the statistic, and 2ˆ
jρ is the squared sample 

autocorrelation at lag j. Under the null hypothesis of no 
serial correlation, the Q-test statistic is asymptotically 
Chi-Square distributed. The p-values above 0.05 indicate 
the acceptance of the null hypothesis of model accuracy 
under 95% significant levels [17]. 

 

3. Results and Discussion 

The time series plots of the catches of Selayor 

(Trichiurus lepturus) and Tamban Beluru (Amblygaster 

leiogaster) show no stability over time (Figure 2). In 

modeling Seasonal ARIMA processes, the first step is to 

determine whether the time series is stationary or 

non-stationary. There exist several tests for stationarity 

among others are the ADF, PP and KPSS. In this paper we 

relaxed such test, and alternatively we observed the 

autocorrelation function (ACF) depicted (Figure 3). The 

autocorrelation that provide initial information relevant to 

the internal organization of time series data gives clear 

evidence of non stationarity in the time series considered 

by displaying a hyperbolic decay pattern rather than 

exponential pattern. 

The time series decomposition plots (Figure 4) separate 

the series into its constituent components i.e, the estimated 

trend component and the estimated seasonal component. 

The plots show that the estimated trend component follows 

a declining trend since 2011 and some noticeable seasonal 

component also displayed. Since all the time series are 

non-stationary, they have to be transformed into a 

stationary time series by applying the appropriate order of 

differencing d or D. The time series plot of the first 

difference series of monthly fish catch data of Trichiurus 

lepturus and Amblygaster leiogaster species are made 

stationary by observing pattern with zero mean and 

constant variance in the plot (Figure 5). The ACF plot 

(Figure 6) decays rapidly which confirmed the stationarity 

assumption (Figure 5). 

 

Figure 2. Time series plots of monthly catches of ikan Selayor and ikan 

Tamban Beluru 

 

Figure 3. Autocorrelation function of monthly fish catch data of ikan 

Selayor and ikan Tamban Beluru 
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Figure 4. Time series decomposition plots separating trend, seasonal and 

random components from the monthly fish catch data of ikan Selayor and 

ikan Tamban Beluru  

 

Figure 5. Time series plot of the first difference series of monthly fish 

catch data of ikan Selayor and ikan Tamban Beluru 

 

Figure 6. Autocorrelation function (ACF) of the first difference series of 

monthly fish catch data of ikan Selayor and ikan Tamban Beluru 

After first differencing, the time series considered  

appears to be quite stable over time (Figure 5). The 

orders p, q, P and Q of the seasonal ARIMA models were 

identified and estimated for both the stationary series 

following Box and Jenkins methodology. Model with 

low Akaike information criteria (AIC) is selected based 

on Akaike information criteria [17], which is a common 

procedure in Box-Jenkins modeling (Table 1). Only the 

best models were displayed. The best fitted models for 

Trichiurus lepturus and Amblygaster leiogaster are 

SARIMA(1,1,0)(1,0,0)12 and SARIMA(0,1,1)(0,0,1)12 

respectively. Before the interpretation and use of the 

model, we are to look and check whether the models are 

specified correctly. Tests for residual autocorrelation 

(AC) are prominent tools for this task. A well-known 

example is the Ljung-Box test for residual 

autocorrelation. If the residuals are correlated, then the 

model should be refined. Otherwise, the residuals are 

white noise and the model is adequate to represent the 

time series [18]. The Ljung-Box test is applied to the 

residuals of the fitted models (Table 2). The results 

showed that all P-values at lags 12, 24, 36 and 48 for 

both models exceeds 0.05 which indicates acceptance of  

models accuracy at 95% significant levels (Table 2). 

Since forecasting future catch is one of the main reasons 

for developing time series model, a 5 months forecast 

using the developed models was presented (Figure 7). 

Table 1. Summary results for the fitted seasonal ARIMA models 

Fish type Selayor Tamban Beluru 

Model SARIMA(1,1,0)(1,0,0)12 SARIMA(0,1,1)(0,0,1)12 

Parameter Estimate S.E Estimate S.E 

Ar1 

Ma1 

Sar1 

Sma1 

-0.2035 

- 

0.2912 

- 

0.1269 

- 

0.1225 

- 

- 

-0.3219 

- 

0.3608 

- 

0.1388 

- 

0.1502 

Table2. Ljung-Box test results for residuals from fitted Seasonal ARIMA 

model 

 

Lags 

SARIMA(1,1,0)(1,0,0)12 SARIMA(0,1,1)(0,0,1)12 

Chi-Square P-value Chi-Square P-value 

12 

24 

36 

48 

9.2355 

18.5434 

27.0698 

31.3229 

0.5099 

0.6733 

0.7948 

0.9515 

13.2267 

18.1341 

31.1556 

33.1964 

0.2113 

0.6980 

0.6078 

0.9211 

 

Figure 7. Five month out-sample forcast from the fitted seasonal ARIMA 

models 

4. Conclusion 

In this paper the Box-Jenkins methodology was used to 

build Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model for monthly catches of two fish species 

found in Malaysian waters for the period from 2007 – 2011, 

and it has proven successful in describing and forecasting 

the monthly fishery dynamics of Trichiurus lepturus and 

Amblygaster leiogaster. The seasonal ARIMA (1, 1, 0) (0, 0, 

1)12 and SARIMA   (0, 1, 1)(0, 0, 1)12 models test. The 

models were used to forecast a five-month upcoming 

catches of Selayor (Trichiurus lepturus) and Tamban 

Beluru (Amblygaster leiogaster). The information provided 

by the model provides estimated amount of the monthly 

fish catches, enough to provide sufficient information that 

can help the decision makers to establish priorities and 
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strategies for proper fish management in the Malaysian 

fishery sector. Further research can be conducted to 

compare the forecast ability of the model with other time 

series models like ARFIMA, exponential smoothing, ANN 

etc. 
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