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Abstract: In this article, we represent the structure of a fuzzy data warehouse. The elements of classification to build the 
fuzzy data warehouse are presented through the three following tasks: identification of the target-attribute, identification of 
linguistic terms and definition of membership functions. From these tasks, we present an approach of a fuzzy data warehouse 
modelling. This allows us to integrate fuzzy logic without affecting the data warehouse base. 
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1. Introduction 

Ever growing data are generated from all parts by 
companies. Decision-making has become crucial for 
managers. The efficiency of this decision-making is based on 
the provision of relevant information and suitable tools. 

DWH systems received at a for the analysis of surrounding 
operational systems. Owing to the complexity and the 
number of operating systems, the data received by DWH are 
heterogeneous. That is why the data must be homogenized in 
the first instance before being treated by the data warehouse. 

The quantity of data which has to be treated in a DWH 
increases every day and develops into difficult tasks for the 
administration and the analysis. A part from the high 
quantity, data coming from operating systems are often 
incomplete, unclear or uncertain. 

This quality problem cannot be completely eliminated in 
the data pre treatment stage. Consequently, a certain quantity 
of imprecision affects directly analysis and decision-making 
which are based on data warehouse information. 

The fuzz’s theory proposed by Zadeh in [1] can deal with 
the lack of clarity, uncertainty and imprecision. Contrary to 
probability systems, it canal so be optimized to interpret 
imprecision in human language and reasoning. 

Consequently, the application of fuzzy logic in DWH 
technologies enhances data analysis and hence leads to a 

better decision-making process. 
In this paper, a modelling approach of fuzzy data 

warehouse is presented. It enables the integration of fuzzy 
logic without affecting the classical data warehouse base. 

2. Preliminaries 

2.1. Fuzzy Subset 

Let E be a classical set used as a frame of reference. 

A fuzzy subset of E is the set of couples ( )( ),x xµ x E∀ ∈

where µ is a mapping from E  onto [ ]0,1 . 

This definition generalizes that of a classical subset for 

which the values of µ are taken only in { }0,1 . It should be 

noted that Aµ  is the characteristic function of the fuzzy 

subset A . 
We write, along with L. A. Zadeh: 

( ) ( ) ( )1 1 2 2/ ...A A A n nA x x x x x xµ µ µ= + + +  

For E finite, we write { }1 2 3, , , ..., nE x x x x= where

( )
E

A x xµ= ∫  
for E  infinite. 
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Often written  

( )( ) ( )( ){ }1 1, ,..., ,n nA x x x xµ µ=  

2.2. Fuzzy Number 

A fuzzy number of average value n , denoted nɶ , a fuzzy 
subset of IR the characteristic function of which nµ ɶ is weakly 

increasing on ( , ]n−∞ , is worth1 at n , and is weakly 

decreasing on [ , )n + ∞  

A classical real number n will have a characteristic 
function such that 0nµ = , x n∀ ≠  

A characteristic function (in rectangular-shaped slot) 
represents the measure of a magnitude in its uncertainty 
interval. 

A characteristic function (bell-shaped curve) models a 
fuzzy number nɶ worth around n .Number nɶ will be all the 
more precise if curve nµ ɶ  is «sharp». 

In all case, ( )n xµ ɶ represents the truth value of the 

proposition « n  has value x ». 

2.3. Operations on Fuzzy Sets in IR 

-The support of a fuzzy set µ  is a classical set 

( ) ( ){ }sup p 0x R xµ µ= ∈ ≻  

-The kernel of a fuzzy set µ is a classical set 

( ) ( ){ }1Ker x R xµ µ= ∈ =  

-A fuzzy set µ is said to be normal if ( )Ker µ ≠ 0. 
-The cutα − or levelα − (degree) set of the fuzzy set µ is 

the classical set 

( ){ },x R xαµ µ α= ∈ ≥  

-A set µ is said to be convex if ( )xµ is a quasi-concave 
function. 

-A fuzzy number is a normal and convex set in IR . 

2.4. Fuzzy Triangular Numbers (FTNs) 

Very often, some data and numbers cannot be specified 
precisely or exactly because of errors on measurement 
techniques or instruments used. When we say that someone is 
180 cm height, their true height can be written conveniently 

as a FTN ( )180 , 180, 180α β− + , whereα et β represent the 

range on the left and the range on the right respectively. In 
general, a FTN (fuzzy triangular number) « a » can be written 

as ( ), ,a a aα β− + where α and β represent the left margin 

error and the right one respectively of a. 
Those types of numbers are alternatively represented by

( ), ,a α β . The mathematical definition of a FTN is given 

below. 

( )

            0

1

             1

1

            0

M

si x m

m x
si m x m

x si x m

x m
si m x m

si x m

α

α
α

µ

β
β

β

 ≤ −
 − − −

= =
 −
 − ≤ +

 ≥ +

≺ ≺

≺

 

Point m , with membership degree l, is called central value 
of FTN M, and α and β are respectively the differences on 

the left and on the right with respect to the central value m . 
A FTN M is symmetric if α β= . Because of the great 

number of applications of FTNs, several authors have studied 
the algebraic properties on FTNs. 

Let us give some of the most common ones. The 
definitions of these arithmetic operations are based on those 
given by Dubois and Prade [2]. 

Let ( ), ,M m α β=
 
and ( ), ,N n γ δ=

 
two FTNs: 

1. Addition: 

( ), ,N M m n α γ β δ+ = + + +  

2. Scalar Multiplication: 
If λ  is a scalar, we have: 

( ) ( ), , , , , 0M m m siλ λ α β λ λα λβ λ= = ≥  

( ) ( ), , , , , 0M m m siλ λ α β λ λα λβ λ= = − − ≤  

In particular, ( ) ( ), , , ,M m mα β β α− = − = −  

3. Subtraction: 

( ) ( ) ( ), , , , , ,M N m n m nα β γ δ α δ β γ− = − = − + +  

For 2 NFTs M and N, the three operations, addition, 
subtraction and scalar multiplication all give FTNs. 

4. Multiplication: 
It can be shown that the product M. N of 2 FTNs is not 

necessarily a FTN. However, the MF of the resulting fuzzy 
number of the product of M and N is bounded by a  triangle. 
A better approximation is the following: 

-If 0M ≥ and 0N ≥ ( )0 0M if m≥ ≥ , then

( ). , ,M N mn m n m nγ α δ β≈ + +  

-If 0M ≤ and 0N ≥ , then

( ) ( ) ( ). , , . , , , ,M N m n mn n m n mα β γ δ α δ β γ= ≈ − −  

-If 0M ≤ and 0N ≤ , then

( ) ( ) ( ). , , . , , , ,M N m n mn n m n mα β γ δ β δ α γ= ≈ − −  

Now we define the quotient of two NFTs using the 
definitions of multiplication and the inverse of two FTN as 
follows: 

5. Inverse 

The inverse of a FTN, ( ), ,M m α β= with 0m ≻  is 

defined as follows: 
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( ) ( )11 1 2 2, , , ,M m m m mα β β α−− − − −= ≈
 

It is an approached value of 1M − which remains valid only 

in the neighbourhood of 
1

m
. 

The inverse of 2 FTNs M and N is thus given by

1.
M

M N
N

−= . 

Given that the inverse and the multiplication are 
approximations, the quotient will also be an approximation. 

The formal definition is given below: 
6. Division: 

1.
M

M N
N

−=  

( ) ( )1 2 2, , , ,m n n nα β δ γ− − −≈  

2 2
. ,

m m n m n

n n n

δ α γ β+ + ≈  
 

 

From the definition of multiplication, we define the power 
of a FTN as follows: 

7. Power 
Using the definition of multiplication, it can be shown that: 

( ) ( )1 1 1, , , , ,
nn n n n nM m m nm nm nmα β β α β− − −= ≈ − −  

3. Fuzzy Data Warehouse 

The DWH models enable the construction of data bases 
dedicated to analysis. That analysis can be carried out at 
different granularity levels, on large volumes of data 
represented in an aggregated manner. 

Moreover, the models of fuzzy data bases are particularly 
interesting for the representation of imprecise and uncertain 
data and the inclusion of uncertain quests. 

In this section, we present a concept of fuzzy DWH based 
on the structure of a meta-table. 

3.1. The Concept of DWH 

Fuzzy concepts can be integrated as the meta table 
structure without   affecting the core of a DWH. Our 
approach is more flexible, since it enables the integration and 
definition of the fuzzy concept, without the need for 
redesigning the DWH core. The use of this DWH storing 
approach makes it possible to extract and analyse data 
simultaneously, in a classical for m and a fuzzy manner. The 
purpose of this section is to represent some concepts of the 
meta tables, the modelling guidelines and the meta model of 
the fuzzy DWH approach. 

In order to integrate fuzzy concepts in a DWH, we start by 
identifying and analysing the elements which have to be 
fuzzily classified in the DWH. Such an element can be a fact 

in the fact table or the dimension attribute. An element which 
has to be fuzzily classified is called the Target attribute and 
the value range of that element instances is called the 
Domain of attribute. 

We define below some basic concepts linked to fuzzy 
DWH, concepts which will be used thereafter. 

Domain of attribute: A set of potential values or the range 
of potential values of a dimension attribute or a fact is called 
Domain of attribute or Universe of discourse of a domain. 
The Domain of attribute of a Domain A is denoted  Dom. 

Target attribute: A dimension attribute or a fact which is to 
be fuzzy classified is called a Target attribute (TA). Under 
fuzzy classification, the T A instances are classified over as 
et (S) represented by a linguistic variable. The linguistic 
variable consists of a set of non numerical terms called 
linguistic terms, S=T1,…,Tk. 

The linguistic terms of a linguistic variable are captured in 
an attribute called class membership attribute. 

Class membership attribute (CMA): a CMA for a target 
attribute TA, represented by CMATA, is an attribute which 
has a set of linguistic terms T1,…,Tk to which the target 
attribute may belong. In other words, for all the possible 
values of a TA (of domain of attribute, DomTA), there exists a 
corresponding relation to a CMA value. The values of CMA 
are the values in the set S. 

All values of DomAC to some fuzzy degree belong to a 
CMA value. The degree of membership to a CMA value is 
called membership degree and it defines the relation of an 
instance TA to a CMA value. 

The membership degree (MD ∈ [0, 1]). It is the measure to 
which the values of a target attribute TA are linked to some 
linguistic terms T1,…,Tk, respectively with the values of 
CMA. 

The MG is calculated using the membership function. 
Membership function (MF): the MF of a CMA class is a 

function µ (TA) which is used to calculate the MD of a TA to 
a CMA µ: TA→[0,1] 

The membership degrees generated by the membership 
functions are captured as membership degree attributes in the 
fuzzy data warehouse model. A membership degree attribute 
is defined as follows:  

Membership Degree Attribute (MDA): the MDA of a TA 
is an attribute which has a set of MD of the TA. The value of 
a MD is calculated by a MF and is represented by µt (TA) = 
MG where MG is the membership degree of TA for the 
linguistic term in CMA. 

An attribute which has to be fuzzily manipulated is 
prolonged by two meta tables. The first meta table contains a 
description of the fuzzy concept and the second meta table 
contains membership degrees of each instance with regards 
to the CMA. 

The two tables are defined as follows: 
Fuzzy Classification Table (FCT): A table which consists 

of linguistic terms and their unique identifiers is called FCT. 
There are two attribute tables which consist of an ID attribute 
and a CMA, where the ID attribute is a unique identifier of 
the table values. Formally, 
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FCTTA = {identifier; CMATA} 
A table which tores the values representing the measure to 

which a value is linked to a linguistic is called Fuzzy 

membership table (FMT). It is a four-attribute table: the 
Identifier table attribute, the target attribute identifier TA, the 
class membership attribute CMATA in the fuzzy classification 
table (FCTTA) and the membership degree attribute (MDA) 
for TA. Formally, 

FMTTA = {identifier; identifier of TA; Identifier of CMATA; 
MDATA} 

3.2. Model of Fuzzy DWH 

The model of fuzzy DWH is a combination of four types 
of tables. They are dimension tables, fact tables, FMTs and 
FCTs. 

A fuzzy DWH is a set of tables represented the following 
way 

FDW = {Dim, Fact, FCTTA, FMTTA} 
Where 
Dim = {a set of category attributes; level of category 

attributes} 
Fact = {a set of measures} 
TA = {TA1, TA2,…,TAn}, n is the number of FCAs. 
It should be noted that the set of TAs is a subset of the 

dimensions and the set of facts. Formally, TA is a sub set of 
Dim U Fact (i.e.∀ TAi ∈ Dim U Fact: 1≤ i ≤ n). 

For each TA1, TA2,....; TAn: 
FCT Tai ={ identifier; CMATai }où1≤ i ≤n. 
FMT Tai = {Identifier, Identifier of FCT, Identifier of TA i, 

MGA TA i}où1≤ i ≤ n. 

Guide lines for the Modelling of the Fuzzy Data Warehouse 

We present in this section a set of guidelines for the design 
of a fuzzy DWH model and the use of these guide lines for 
the elaboration of a meta model for the FDW using a real-life 
case. 

i. Distinct Fuzzy Classes / Linguistic Conditions 

A set of linguistic terms (also called fuzzy classes) is used 
to classify instances of a target attribute. In the simplest case, 
the linguistic terms are distinct, given that there is only one 
set of non repeated linguistic terms between them. In this 
case, one instance of a target attribute belongs to only one 
fuzzy class at a time and the degree of relation is measured 
by the MF. Formally, 

TAinstance (1): Fuzzy classes(1) 

 

Guideline 1. Add a fuzzy classification table (FCT) and a 
fuzzy membership table (FMT) and a fuzzy membership 
table (FMT) for each target attribute TA, as indicated below. 

 

Different Membership Degrees for the Same Linguistic 
Conditions 

An instance of a TA may belong to a linguistic term but 
may have different degrees with which it belongs to a 
linguistic term. It is due to the fact that multiple professional 
users have different interpretations about one instance of a 
target attribute i.e. multiple MFs are used for a TA. Formally, 

TAinstance (1): Fuzzy classes (1) 
But with different membership degree 

 

Guideline2: If an instance of a TA belongs to a fuzzy class, 
but with multiple degrees of membership, add a FCT and M 
number of FMTs, As indicated below, where M is the 
number of distinct membership degrees. 

 

ii. Different Linguistic Conditions  for a Target Attribute 

An instance of a target attribute may belong to multiple 
linguistic terms as professional users can have more than 
ones  of classes to which an instance of target attribute may 
belong i.e. multiple fuzzy classes and multiple MFs. 
Formally 

TAinstance (1): Fuzzy classes (M) 
Guideline 3. If an instance of a TA belongs to multiple 

fuzzy classes, but with the same membership degree, add M 
number of FCTs and a FMT, where M is the number of 
distinct linguistic terms. 

Guideline 4. If an instance of a TA belongs to more than 
one fuzzy category with different membership degrees, add 
an umber M of FCTs and FMTs, as indicated below, where M 
is the number of distinct linguistic terms, and one FCT is 
linked to one FMT at the most. 

4. Meta Model and Method for 

Modelling a Fuzzy DWH 

4.1. Meta Model 

According to Harel et al. Al. [16], a meta model defines 
the elements of a conceptualization, as well as their 
relationships. Figure 1 shows the meta model of the proposed 
fuzzy DWH in which the right side shows the meta model of 
the classical DWH. The left side shows how the fuzzy 
concepts are integrated with a classical DWH as a structure 
of meta tables. 
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Figure 1. Meta model of fuzzy DWH. 

The model class of a DWH in the meta model refers to a 
DWH schema which is made up of one or more fact tables, 
and two or more dimension tables. A fact table is located at 
the centre of a DWH model and it essentially captures the 
commercial measures of the process (Kimball [17]). The 
relationship with dimension tables is realized with the help of 
fact attributes. A fact attribute could be a measure (also 
called fact) or a key attribute (primary or foreign key). A 
measure (a sub-class of the fact attribute) captures critical 
values of a business process i.e. where a set of key attributes 
are used to capture the relationship with dimension tables. 

In a classical DWH, two or more dimension tables 
surround a fact table. A fact table can also be linked to one or 
more other dimension tables to form hierarchies. In this case, 
each dimension table is at a different level of hierarchy (in 
order to comply with the snow flake schema). The level of 
hierarchy is referred to by the class of the dimension level in 
the meta model. A dimension table contains some dimension 
attributes which represent the category attributes or key 
attributes of a dimension table. The key attributes capture the 
relationship between dimension tables, respectively between 
fact and dimension tables. Moreover, other non-key attributes 
characterize the category attributes of a dimension table [19]. 

The model class of fuzzy DWH considered in the meta 
model refers to the fuzzy concept integrated with in a DWH. 
For each target attribute identified a model of fuzzy DWH 

can be added. Thus, a classical model of DWH can have 
more than one fuzzy DWH model. Fuzzy concepts may exist 
without a linguistic variable. These fuzzy concepts are 
represented by fuzzy DWH models without a FCT. 

Each FCT has a relation to one or more FMTs. Therefore, 
the fuzzy DWH model is made up of one or more FMTs and 
zero or more FCTs. 

AFMT is built of FMAs. AFMA might be a key attribute 
to denote primary key or foreign keys. A second type of 
FMA is the MDA. 

The instances of the MDA are calculated by the FMFs of 
the fuzzy DWH model. 

The FCT contains the fuzzy CMAs which can be, similarly 
to FMAs, key attributes. Furthermore, the fuzzy class 
membership attributes can be a class membership attribute 
that describes the linguistic term of the fuzzy concept. 

4.2. A Method of Modelling a Fuzzy Data Warehouse 

In order to create a fuzzy DWH, a method is shown that 
guide the translation of a warehouse of a crisp DWH into a 
fuzzy DWH. The input of the method is a classical DWH and 
the output is a fuzzy DWH. The process is broken down into 
two phases: in the first phase, the first phase elements of 
classification are defined and in the second phase, the fuzzy 
DWH is built. Figure 2 shows the tasks and order in which 
they are carried out. 
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Figure 2. Graphical overview of the modelling method of a fuzzy DWH. 

To illustrate the different steps of the method, the 
following example is used: 

Example 1. ADWH contains the dimension product. With 
only one hierarchy, the unique level dimension containing a 
table product. Each product has the following attributes: 
id_product, name, date_expiration and price. From the unit 
price attribute, we can calculate the product price using the 
unit price multiplied by the quantity. Fig. 3 shows the 
dimension product. 

 

Figure 3. Dimension Product. 

The purpose of this stage is to define the elements of 
classification which are used in the second stage to build the 
fuzzy DWH model. It involves three tasks: identify the target 
attribute, identify the linguistic terms and define the 
membership functions. Here are the details: 

First task: This task consists in identifying what has to be 
classified i.e. the TA which contains the values destined to be 
classified fuzzily. 

This will be done in a way that takes into account the input 

of the end user. In the simplest, a TA is identified. For 
Example 1, consider product price as a TA. 

Second task: It consists in determining how the values of 
the identified TA should be classified i.e. identifying these 
linguistic terms which are used to classify the instances of a 
TA. Repeat this task for all TAs. It is showed by Loop-
through 1 in Figure 2. There are two possibilities: 

Case 1–Distinct linguistic conditions: it is the simplest 
case in which the linguistic terms are distinct i.e. there is only 
one set of linguistic terms. Formally, 

TAinstance (1): Fuzzy classes (1) 
For the example of the product price, let us consider the set 

of linguistic terms for {price_high; price_average; prix_low}. 
Case 2 –Different linguistic terms for a TA: it is a case 

where there are more than ones of linguistic terms to classify 
the TA instances. In this case, instances of the TA belong to 
more than one linguistic term, as identified by professional 
users. Formally, 

TAinstance (1): fuzzy classes (M) 
For the example on the product prices, consider that the 

following sets of linguistic terms are identified. These sets 
are{price_low;price_average; price_high }and{ cheaper; 
cheap; expensive}.The linguistic terms might already exist in 
a classical DWH modelling form of instances of a dimension 
category. In that case, these terms can be used for classifying 
the cases of TA. 

Third task: it consists in defining a MF (denoted µ ) for 
each linguistic term. It is done in such away that the values 
can be determined over a scale of 0 to 1. Repeat the task for 
each identified linguistic term. It is showed by Loop-through 
2 in Figure 2. It could be the case only for different users i. 
e .a TA belongs to the same set of linguistic terms with 
different membership degrees. The case is as follows: 

The case is as follows: 
Case3– Different MDs for the same linguistic terms: it is a 

case in which an instance of a TA belongs to a linguistic term 
with different membership degrees. It can be due to the fact 
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that multiple business users have different interpretations of a 
single instance of a TA i.e. the multiple MFs are used for a 
TA. Formally, 

TAinstance (1): fuzzy classes (1) 
But with different membership degrees. 

Below, we discuss the examples of the third task for each 
case:  

Example of Task 3, Case 1–Distinct linguistic terms. For 
the product price example, a MF is defined for each linguistic 
term. The MFs µlow,µaverage,µhigh become:  

( )
   product_price   500, MD_PriceGroup 1

_    product_price   3000, MD_PriceGroup 0

3000-product_price
else                       ,DA_PriceGroup

3000-500

low

if

product price ifµ


 ≤ =


= ≥ =

 =


 

( )

   product_price   500, DA_PriceGroup 0

   product_price   5000, DA_PriceGroup 0

_ if   2000 product_price 3000, DA_PriceGroup 1

produ
if   500 product_price 2000, DA_PriceGroup

average

if

if

product priceµ

≤ =
≥ =

= ≤ ≥ =

=≺ ≻
ct_price-500

  
2000-500

5000-product_price
else                       ,DA_PriceGroup

5000-3000













=


 

( )
   product_price   3000, MD_PriceGroup 0

_    product_price   5000, MD_PriceGroup 1

product_price-3000
else                       ,DA_PriceGroup

5000-3000

high

if

prodcut price ifµ


 ≤ =


= ≥ =

 =
  

Example of Task 3 for case 2 – Different linguistic terms for a TA. For case 2 of the example of the product price ,a MF is 
defined for each linguistic term .i.e. µlow,µaverage,µhigh,µcheaper,µadult,µold. The MFsµlow,µaverage,µhigh are the same as above an 
dµcheaper,µcheap,µcher become: 

( )
   product_price   500, MD_PriceGroup 1

_    product_price   3000, MD_PriceGroup 0

3000-product_price
else                       ,MD_PriceGroup

3000-500

low

if

product price ifµ


 ≤ =


= ≥ =

 =


 

( )

   product_price   500, MD_PriceGroup 0

   product_price   5000, MD_PriceGroup 0

_ if   2000 product_price 3000, MD_PriceGroup 1

prod
 if   500 product_price 2000, MD_PriceGroup

average

if

if

product priceµ

≤ =
≥ =

= ≤ ≥ =

=≺ ≻
uct_price-500

  
2000-500

5000-product_price
else                       ,MD_PriceGroup

5000-3000













=


 

( )
   product_price   3000, MD_PriceGroup 0

_    product_price   5000, MD_PriceGroup 1

product_price-3000
else                     ,MD_PriceGroup

5000-3000

high

if

product price ifµ


 ≤ =


= ≥ =

 =
  

Example of Task 3, Case 3– Different membership degrees for the same linguistic terms. For Case 3 of the product price 
example, a MF for each linguistic term becomes: 
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( )
   product_price   500, MD_PriceGroup 1

_    product_price   3000, MD_PriceGroup 0

3000-product_price
else                      , MD_PriceGroup

3000-500

low

if

product price ifµ


 ≤ =


= ≥ =

 =


 

( )

   product_price   500, MD_PriceGroup 0

   product_price   5000, MD_PriceGroup 0

_ if   2000 product_price 3000, MD_PriceGroup 1

produ
if   500 product_price 2000, MD_PriceGroup

average

if

if

product priceµ

≤ =
≥ =

= ≤ ≥ =

=≺ ≻
ct_price-500

  
2000-500

5000-product_price
else                       ,MD_PriceGroup

5000-3000













=


 

( )
   product_price   3000, MD_PriceGroup 0

_    product_price   5000, MD_PriceGroup 1

product_price-3000
else                   ,DA_PriceGroup

5000-3000

high

if

product price ifµ


 ≤ =


= ≥ =

 =


 

In order to connect the product price with the same linguistic terms using another MD, we define another MF for each 
linguistic term i.e. µlow1, µaverage1, µhigh1. The definitions of the MF become: 

( )1

   product_price 1750, MD_PriceGroup 1

_    prodcut_price  3500, MD_PriceGroup 0

3500-product_price
else                       ,DA_PriceGroup

3500-1750

low

if

product price ifµ


 ≤ =


= ≥ =

 =


 

( )1

  product_price  3000, MD_PriceGroup 0

   product_price  7000, MD_PriceGroup 0

_ if   3500 product_price 4000, MD_PriceGroup 1

produ
if   3000 product_price 3500, MD_PriceGroup

averzge

if

if

product priceµ

≤ =
≥ =

= ≤ ≥ =

=≺ ≻
ct_price-3000

  
3500-3000

7000-product_price
else                       , MD_PriceGroup

7000-4000













=
  

( )1

  product_price 4000, MD_PriceGroup 0

_   product_price  7000, MD_PriceGroup 1

product_price-4000
else                    ,MD_PriceGroup

7000-4000

high

if

product price ifµ


 ≤ =


= ≥ =

 =
  

5. Conclusion 

DWH systems are used for the analysis of company 
performance. A potential of a classical DWH is that the 
numerical values of a DWH can be difficult to interpret by 
professional users, or can be interpreted in a wrong way. 

For the precise comprehension of numerical values, 
professional users require an interpretation in terms which 

are significant but non numerical. 
However, if classification between the linguistic terms is 

strong, the true values cannot be measured. The solution is 
the use of a fuzzy – founded representation. The fuzzy 
representation allows the integration of fuzzy concepts with 
in the dimensions and the facts, while preserving the clear 
data structures and that leads to a fuzzy modelling. 

In our study, we have applied fuzzy concepts at the level 
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of a dimension hierarchy. The FMT provides the relation to 
the dimension table in which the dimensional attribute 
resides. An example of this representation is carried out, 
modelled when applied in a DWH of a product price 
hierarchy of the dimension product. 

General Abbreviations 

CMA Class Membership Attribute 
DWH Data Warehouse 
FCT Fuzzy Classification Table 
FMA Fuzzy Membership Attribute 
FMT Fuzzy Membership Table 
FTN Fuzzy Triangular Number 
MD Membership degree 
MDA Membership Degree Attribute 
MF Membership function 
MG Membership Grade 
MGA Membership Grade Attribute 
TA Target attribute 

 

References 

[1] Zadeh, L. A. (1973). The Concept of a Linguistic Variable and 
its Application to Approximate Reasonning-1, Informations 
Sciences Vol.8/3, p.199-249. 

[2] Dubois, D., Prade, H.(1985). Théories des possibilités, 
Applications à la représentation des connaissances en 
informatique, Masson, 2e édition. Academic Press, NewYork. 

[3] Zadeh, L. A. (1978). Fuzzy Sets as a Basis for a Theory of 
Possibility, Fuzzy Sets and Systems Vol.1, 3-28. 

[4] Buckley, J. J. (1989). Solving Possibilistic Linear 
Programming Problems, Fuzzy Sets and Systems Vol. 31, 329-
341. 

[5] Kaufmann (1977). Introductionàl a théorie des sous-ensembles 
flous, A l'usage des Ingénieurs, (Fuzzy Sets Theory), Tome 1, 
Éléments théoriques de base, Masson, Paris. 

[6] Klir, G. J., Folger, T. A. (1988). Fuzzy Sets, Uncertainty, and 

Information, Prentice-Hall, Englewood Cliffs, NJ. 

[7] Buckley, J. J. (1988a). Possibility and Necessity in 
Optimization, Furzy Sets and Systems Vol.25, 1-13. 

[8] Pedersen, T. B., Jensen, C. S., and Dyreseon C. E.. Supporting 
Imprecision in Multidimensional Data bases Using 
Granularities. Eleventh International Conference on Scientific 
and Statistical Database Management, 1999. 

[9] Inmon W., Building the data warehouse, John Wiley &Sons, 
1996. 

[10] Kimball R., The Data warehouse Toolkit, John Wiley & Sons, 
1996. 

[11] Jarke M., Lenzerini M., Vassiliou Y., Vassiliadis P., 
Fundamentals of Data Warehouses, Springer-Verlag, 1998. 

[12] Sapir, L., Shmilovici A., and Rokach, L.. A Methodology for 
the Design of a Fuzzy Data Warehouse. InIntelligent Systems, 
2008. IS’08.4th Internationa lIEEE Conference, volume 1, 
2008. 

[13] Inmon W., “The operational Data Store”, White Paper, www. 
billinmon.com/library/whiteprs/earlywp/ttods.pdf,2000. 

[14] Codd E., Codd S., Salley C., Providing OLAP( On-Line 
Analytical Processing ) to User-Analysts: An IT Mandate, 
Report, Arbor Soft ware White Paper,1993. 

[15] L. A. Zadeh. The Concept of a Linguistic Variable and its 
Applicationt of Approximate Reasoning–PartI. Information 
Science, (8): 199-249, 1975. 

[16] D. Hareland B. Rumpe. Meaningful Modeling: What’s the 
Semantics of "Semantics"? Computer, 37(10): 64–72, October 
2004. 

[17] Ralph Kimball and Joe Caserta. The Data Warehouse ET L 
Tool kit. Wiley Publishing, Inc., 2004. 

[18] K. V. N. N. Pavan Kumar, P. Radha Krishna, and Supriya 
Kumar The Fuzzy OLAP Cube for Qualitative Analysis. 
InIntelligent Sensing and Information Processing, pages 290–
295, 2005. 

[19] Heiko Schepperle, Andreas Merkel, and Alexander Haag. 
Erhaltvon Imperfektion ineinem Data Warehouse. 
Internationales Symposium: Data-Warehouse-Systeme and 
Knowledge - Discovery, 2004. 

 


