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Abstract:  In this paper ,  linear fractional multi-objective optimization problems subject to a system of fuzzy relational 

equations (FRE) using the max-average composition are considered .  First ,  some theorems and results are presented to 

thoroughly identify and reduce the feasible set of the fuzzy relation equations .  Next ,  the linear fractional multi-objective 

optimization problem is converted to a linear one using Nykowski and Zolkiewski's approach .  Then ,  the efficient solutions are 

obtained by applying the improved � -constraint method .   Finally ,  the proposed method is effectively tested by solving a 

consistent test problem . 
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1. Introduction 

 Multi-objective programming problems play an important 

role in the optimization theory .  Generally speaking ,  the 

objective functions of a multiple objective programming 

(MOP) problem may conflict with one another .  Thus ,  the 

notion of Pareto optimality or efficiency associated with the 

feasible region has been introduced .  There are several 

methods to find the efficient solutions of the MOP in the 

literature .  For details see [6]. 

 An optimization problem with multiple objective functions 

and fuzzy relational equation (FRE) or fuzzy relational 

inequality (FRI) constraints is among interesting issues in 

this field .  Wang [23] considered a multi-objective 

mathematical programming problem with constraints defined 

by the FRE with the max-min composition .  The nonlinear 

multi-objective optimization problems subject to FRE with 

the max-min and max-average compositions were studied in 

[16] and [13,14] ,  respectively .  They developed specific 

reduction procedures to simplify a given problem ,  according 

to the special structure of the solution set ,  and further 

proposed some genetic algorithms to attain efficient 

solutions .  Many researchers have considered the problem and 

developed the theoretical topics ,  solution procedures and 

various applications [1-5,8-12,17,18,20,22,24-26]. 

 Here ,  a linear fractional multi-objective optimization 

problem subject to the FRE with the max-average 

composition is considered .  Since the feasible domain of this 

problem is generally non-convex ,  traditional methods may 

have difficulty in deriving the set of efficient solutions . 

Nevertheless, here, an efficient method is proposed to obtain 

the efficient solutions of the linear fractional multi-objective 

optimization problem (LFMOP) subject to the FRE,   exactly 

and completely, using special structures of the feasible 

domain and the objective functions .  Indeed,  the linear 

fractional multi-objective optimization problem is converted 

to a linear one using Nykowski and Zolkiewski's approach 

[19] .  Then ,  the efficient solutions are obtained by applying 

the improved �-constraint method . 

 In Section 2,  the basic definitions and theorems are 

presented .  I n Section 3, the feasible set of systems of fuzzy 

relation equations will be characterized and the 

corresponding reduced problem will be investigated  (our 

motivation).   Section 4 will present our proposed approach to 

solve a linear fractional multi-objective optimization problem 
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with fuzzy relation equation constraints.  To illustrate the 

procedure ,  a numerical example will be provided in Section 5 

that will be followed by our concluding remarks in Section 6. 

2. Preliminaries 

 In this section , some  definitions and theorems are 

presented which are basic in the literature [6].  Consider ,   

min�∈� � = 
��
 = �
���
, … , 
���
�              (2.1) 

where 
: ℛ� ⟶ ℛ�  is a nonlinear vector function and � ⊆ℛ�is the set of feasible solutions .  Moreover , � ∈ � and  � =�� ∈  ℛ�: ∃x ∈ χ, z = �
���
, … , 
���
�!   are called a 

solution vector and the criterion space ,  respectively .  

Notation 2.1. Let x, y ∈ ℛ# , � ≦ %  ⟺ �' ≤ %' ,  for ) = 1, … , +. � ≤ %  ⟺ � ≦ %   and � ≠ %. � < %  ⟺ �' < %' ,  for ) = 1, … , +. 
  Let z�, z/ ∈  Z ,  we say z� dominates z/ and z� is non-

dominated if and only if z� ≤ z/and there is no z ∈ Z that 

dominates z�  ,  respectively .  Moreover ,  we say �1 ∈ �  is an 

efficient solution to problem (2.1) if and only if there is no x ∈ χ such that 
��
 ≤ 
��1
. 

 In the remainder of the present section ,  some 

definitions ,  notations and theorems from different topics are 

reviewed which are needed in the latter sections .  Let 2 =31, … , 45  , 6 = 31, … , +5 , 7 = 31, … , 85  , 9 = :;<'=>× #  and @ = �@<
>× �, ;<' , @< ∈ [0,1],  for all i ∈ I and j ∈ J.  A system 

of fuzzy relation equations with the max-average 

composition can be considered as  

  9GHI� = @,                                       (2.2) 

where the operator “GHI” is defined as follows : 

 ;<GHI� = max'∈K HLMN�M/ ,     O ∈ 2,                          (2.3) 

and ;< is the i-th row of A. 

Notation 2.2.  For the i-th constraint (2.2) ,  we set  JQ� = Rj ∈ J :  a<' < 2bQU,                                   
JQ/ = Rj ∈ J :  a<' = 2bQU, 
JQV = Rj ∈ J :  a<' > 2bQU,                                 
X�O
 = R) ∈ 6 : 2@< − ;<' ≤ 1U,               O ∈ 2 ℐ�)
 = 3O ∈ 2 :  ) ∈ X�O
 5,                        ) ∈ 6 χQ = 3� ∈ [0,1]�: ;<GHI� = @<5,         O ∈ 2    � = 3� ∈ [0,1]�:  9GHI� =  @5.                    � and �<are the feasible sets of the problem and the i-th 

constraint ,  respectively .  When � is not empty ,  it is in general 

a non-convex and non-singleton set and can be completely 

determined by a unique maximum and a finite number of 

minimal solutions [21]. 

 Definition 2.3. [15] . �[ ∈ χ is a maximum solution if � ≤�[  ,  for all � ∈ �,  and if � ≤ �\  implies � = �\  ,  for all � ∈ � , 

 �\ ∈ � is called a minimal solution . 

Definition 2.4. [16].  If a value-change in some element(s) 

of a given fuzzy relation matrix 9  has no effect on the 

solutions of a corresponding fuzzy relation equations ,  this 

value-change is called an equivalence operation. 

 A traditional approach for solving the MOP is the 

scalarization techniques that formulate the MOP as a single 

objective program .  Sometimes ,  the feasible set ,  � ,  is limited 

by some new constraints related to objective functions of the 

MOP and/or some new variables introduced .  Here ,  we utilize 

a well-known scalarization technique called the �-constraint 

method which was improved by Ehrgott and Ruzika [7].  In 

this method ,  the corresponding single program to the MOP 

(2.1) is ,  min 
]��
  −  ∑ _<`<N<a ] + ∑ c<`<d<a ]`. e.                                                        
<��
 + `<N − `<d ≤ �< ,       O ∈ 7 ∖ 3g5`<N,  ̀ <d ≥ 0 ,                           O ∈ 7 ∖ 3g5x ∈ χ,                                        
        (2.4) 

where _< ,  c< ≥ 0 ,  for all O ∈ 7 ∖ 3g5. 

 The following results on the improved �-constraint method 

can be found in [7]: 

 (i) If there is an O ≠ g such that c< − _< < 0 ,  then problem 

(2.4) will be unbounded. 

 (ii) If c − _ ≥ 0 ,  then there is always an optimal solution 

of (2.4) such that `<N`<d = 0 ,  O ≠ g. 

 (iii) Let �_, c
 ≧ 0 . If ��[, `̂N, `̂d
 is an optimal solution of 

(2.4) ,  then �[ will be a weakly efficient solution of the MOP. 

 (iv) Let �_, c
 ≧ 0.  Let ��[, `̂N, `̂d
 be an optimal solution 

of (2.4) .  If �[ is unique ,  then �[ will be a strictly efficient 

solution of the MOP. 

 (v) Let �_, c
 > 0 .  Let ��[, `̂N, `̂d
 be an optimal solution 

of (2.4) .  Then ,  �[ is an efficient solution of the MOP. 

 We shall assume throughout the paper that c − _ ≥ 0 ,  and 

m, n and p stand for the number of constraints in system 

(2.2) ,  the dimension of solution vectors and the number of 

objective functions of problem (2.1) ,  respectively . 

3. Systems of Fuzzy Relation Equations 

 Here, the feasible set of systems of fuzzy relation 

equations is characterized and the corresponding reduced 

problem will be investigated. It means  we consider the 

characteristics of the solution set of (2.2) ,  when � ∈[0,1]� ,  that is ,  9GHI� = @,� ∈ [0,1]�,                                        (3.1) 

and attempt to simplify the problem by reducing the solution 

set .  System (3.1) can also be considered as   ;<GHI� = @<  , 

 O ∈ 2 ,  where ;< is the i-th row of A where the operator “GHI” 
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is defined by (2.3) .  The results which are proven in this 

section are our contributions . 

  3.1. Characterization of the Feasible Set 

Proposition 3.1.  A vector � ∈ [0,1]� fulfills the i-th 

constraint if and only if  

 
∀ ) ∈ 6 ,  �' ≤ 2@< − ;<' ,

 ∃ )l ∈ 6 ,  �'m = 2@< − ;<'m .              (3.2) 

Lemma 3.2. If 6<V ≠ ∅ then �< = ∅ . 

Proof. Let )l ∈ 6<V .  By contraction ,  if � ∈ �<  then 

according to (2.3) ,  �' ≤ 2@< − ;<'  ,  for all ) ∈ 6  .  Thus , 

 �'m ≤ 2@< − ;<'m < 0 . 

Corollary 3.3.  If �< ≠ ∅ then 6<V = ∅ . 

Lemma 3.4. [12].  Let �< ≠ ∅ .  The maximum solution in �< is  �[< = : �[< �, … , �[< �= where �[< ' = min:2@< − ;<' , 1= ,
 for all ) ∈ 6 . 

Proof.  �[< ∈ �  was shown in [12].  By contraction ,  we 

prove that  �[< is the maximum solution of �< .  Let � ∈�< and )l ∈ 6  such that �'_l > �[< '_l = min:2@_O −;<'m , 1
  .  Thus ,  �'m > 2@< − ;<'m  or �'_l > 1  (this case is 

impossible ,  since �'_l ∈ [0,1]
 .  If�'m > 2@< − ;<'m  ,  we 

have max'∈K�;<' + �'
 > 2@< that is � ∉ �< . 
Notation 3.5. Let �\�)
< = : �\�)
�< , … , �\�)
�< =  where ) ∈ X�O
 (see Notation 2.2) and 

  �\�)
] = x2@< − ;<'  ,  g = ) ,0 ,              g ≠ ) , y<                (3.3) 

Lemma 3.6. [12].  Let �< ≠ ∅ .   

 a .  For all ) ∈ X�O
 ,  �\< �)
 is a minimal solution in �<. 
 b .  �< = ⋃ { �\< , �[< |'∈}�<
  . 

Definition 3.7.  

 �[ = minQ∈~ �[<                                  (3.4) 

�\ = maxQ∈~ �\< ���O

                             (3.5) 

where � = ���1
, … , ��4

 and ��O
 ∈ X�O
 for all O ∈ 2 . 

Lemma 3.8. [12]. 

 a . �[ is the maximum solution of (3.1). 

 b .  �l ⊆ �� ,  where �l denotes the minimal solutions set of � ,  �� = 3�\��
 ∶   � ∈ � 5 and � = X�1
 × … × X�4
 .  

 c .  χ = ⋃ [�\��
, �[]�∈�  ,  where � = R� = :��1
, … , ��4
= ∶
 ��O
 ∈ X�O
 ,  O = 1, … , 4 U . 

Lemma 3.9. If there is an O ∈ 2  such that 6<V ≠ ∅  then � = ∅ . 

Proof. According to Lemma 3.2 ,  the proof is obvious . 

Theorem 3.10. � = ⋂ �<Q∈~  . 

Proof. Let � = R� = :��1
, … , ��4
= ∶   ��O
 ∈ X�O
 ,  O =1, … , 4U    It is sufficient to prove two statements : 

(1)� ⊆ ⋂ �<<∈�  and (2)⋂ �<<∈� ⊆ �. 

For (1): � ∈ � ⟺ � ∈∪�∈� [�\��
, �[] 

     ⟺ ∃� ∈ � ,  �\��
 ≤ � ≤ �[      ⟺ ∃� ∈ � ,   ∀g ∈ 6 , :�\��
=] = 4;�<∈� : �\:��O
=< =] ≤ �] ≤ �[] = 4O+<∈� �[]<
             ⟺ ∃� ∈ � ,   ∀g ∈ 6, ∀ O ∈ 2 ,    

             � �\< :��O
=�] ≤ �] ≤ �[< ]     
           ⟺ ∃� ∈ � , ∀g ∈ 6 , ∀O ∈ 2,     
x2@< − ;<] ,  g = ��O
0 ,              otherwise ≤ �] ≤ min�2@< − ;<] , 1
y 

(3.6)            ⟺  ∃� ∈ � , ∀g ∈ 6 , ∀O ∈ 2 ,  
x2@< − ;<] ,  g = ��O
0 ,              otherwise ≤ �] ≤ x2@< − ;<] ,  g ∈ X�O
1 ,              otherwiseyy 
           ⟺ ∀� ∈ 2 , ∃���
 ∈ X��
 , ∀g ∈ 6 ,  ∀O ∈ 2 , 
x2@< − ;<] , g = ��O
0,              otherwisey ≤ �] ≤ x2@< − ;<] , g ∈ X�O
1,             otherwisey 
⟹ ∀� ∈ 2 , ∃���
 ∈ X��
 , Let   ) = ���
,  ∀g ∈ 6 ,  ∀O = � , 
x2@< − ;<] , g = )0,             otherwisey ≤ �] ≤ x2@< − ;<] 2@< − ;<] ≤ 1 1,            2@< − ;<] > 1 y 
⟺ ∀O ∈ 2 , ∃) ∈ X�O
 , ∀g ∈ 6 , 
         � �\< �)
�] ≤ �] ≤ min�2@< − ;<] , 1
 = �[< ] 

(3.7) ⟺ ∀O ∈ 2 , ∃) ∈ X�O
 , � ∈ { �\�)
< , �[< | 
⟺ ∀O ∈ 2 , � ∈ � { �\�)
< , �[< |'∈}�<
  

⟺ ∀O ∈ 2 , � ∈ �< 
⟺ � ∈ � �<

<∈�  

For (2): Like to the previous part, we have: 

x ∈ � χQ
Q∈~ ⟺ 

          ⋯        ⟺  �3.7
 ⟺ ∀O ∈ 2 , ∃)< ∈ X�O
 , ∀g ∈ 6, 
x2@< − ;<]  , g = )<0,             otherwisey ≤ �] ≤ x2@< − ;<]  , g ∈ X�O
1,             otherwisey 

              ⟺ ∀O ∈ 2 , ∃)< = ��O
 ∈ X�O
 , ∀g ∈ 6 , 
x2@< − ;<]  , g = ��O
0,             otherwisey ≤ �] ≤ x2@< − ;<]  , g ∈ X�O
1,             otherwisey 

              ⟹ Let    � = :��1
, … , ��4
= , ∀O ∈ 2 , ∀g ∈ 6 , 
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x2@< − ;<]  , g = ��O
0,             otherwisey ≤ �] ≤ x2@< − ;<]  , g ∈ X�O
1,             otherwisey 
            ⟺ �3.6
 ⟺ ⋯ ⟺  � ∈ �  

Remark 3.11. If @< = 0 for some O ∈ 2 ,  it can be shown that � = ∅ .   

 According to Remark 3.11 and Lemma 3.9 ,  we shall 

assume in this section that @ > 0  and 6<V = ∅ ,  for all O ∈2 ,  respectively . 

3.2. Problem Reduction 

Detection of redundant constraints :  Here ,  we consider the 

conditions under which a constraint of the problem can be 

omitted . 

Theorem 3.12.  Let � ≠ ∅ ,  O�, O/ ∈ 2and O� ≠ O/ .  If the O�-th 

and O/-th constraints satisfy 

 1 .  X�O�
 = X�O/
 ,   

 2 .  ∀g ∈ X�O�
 = X�O/
 ,  2@ <� − ;<�] = 2@<� − ;<�], 

 then the constraint O/ (or O�) is irredundent . 

Proof. We show that ⋂ χQ ⊆ χQ�QaQ� .  Let � ∈ ⋂ χQQaQ� be 

arbitrary .  

� ∈ � χQ
QaQ�⟺  ∀i ∈ I ∖ 3i/5, � ∈ �< = � { �\�)
< , �[< |'∈}�<
⟺ ∀O ∈ 2 ∖ 3i/5 , ∃)< ∈ X�O
 , �\�)<
< ≤ � ≤ �[<

 

⟺ ∀O ∈ 2 ∖ 3O/5, ∃)< ∈ X�O
,  ∀g ∈ 6 , : �\�)<
< =] ≤ �] ≤ �[]<⟺ ∀O ∈ 2 ∖ 3O/5 , ∃)< ∈ X�O
 ,  ∀g ∈ 6 ,                                              x2@< − ;<'L , g = )<0,              otherwisey ≤  �] ≤ �[]<  = min�2@< − ;<] , 1
 

⟺ ∀O ∈ 2 ∖ 3O/5 , ∃)< ∈ X�O
 , ∀g ∈ 6, 
          � 0 ≤ �] ≤ 1 ,                           g ∉  X�O
,0 ≤  �] ≤  2@< − ;<] ,       g ∈ X�O
 ∖ 3)<5,2@< − ;<'L ≤ �] ≤ 2@< − ;<] , g =  )<

y 
⟺ ∀O ∈ 2 ∖ 3O/5 , ∃)< ∈ X�O
 ,x�] ≤ 2@< − ;<] , g ∈ X�O
 ∖ 3)<5,�] = 2@< − ;<'L  , g =  )< , y 
⟹ O = O� , ∃)<� ∈ X�O�
 ,

� �] ≤ 2@<� − ;<�] , g ∈ X�O�
 ∖ R)<�U,�'L� = 2@<� − ;<�'L�  , g =  )<�  , y 
⟺ ∃)<� ∈ X�O/
 , � �] ≤ 2@<� − ;<�] , g ∈ X�O/
 ∖ R)<�U,�'L� = 2@<� − ;<�'L�  , g =  )<�  , y 
⟺ ∃)<� ∈ X�O/
 , ∀g ∈ 6,

� 0 ≤ �] ≤ 1 ,                      g ∉  X�O/
,0 ≤  �] ≤  2@<� − ;<�] ,   g ∈ X�O/
 ∖ 3)<�5,�'L� = 2@<� − ;<�'L� ,        g =  )<� , y 

⟺ ∃)<� ∈ X�O/
,  ∀g ∈ 6 , : �\:)<�=<� =] ≤ �] ≤ �[]<�
⟺ � ∈ � { �\�)
<� , �[<� |'∈}�<�
 = �<�  

Example 3.13. Consider ,   

�0.7954 0.4927 0.35470.7751 0.2369  0.84480.8165 0.5139 0.3759� GHI� = �0.63910.62890.6496�.  
  Here ,  we have X�1
 = X�3
 = 31,2,35  .  Computing  <' = 2@< − ;<'  ,  for all O ∈ 2 and ) ∈ 6 results that : 

¡ = �0.4827 0.7854 0.92340.4827 1.0209 0.41300.4827 0.7854 0.9234�.  

  These values of the first and third rows are equal ,  thus ,  by 

applying Theorem 3.12 ,  the third (or the first) constraint is 

omitted .  By solving the reduced system ,  we obtain the 

maximum solution , �[ = � 0.4827 ,  0.7854 ,  0.4130
¢ and the 

minimal solutions as follows: �\:�1,1,1
= = � 0.4827 ,  0 ,  0 
£ ,   
 �\:�1,1,2
= = � 0.4827 ,  0.7854 ,  0 
£ ,   �\:�1,3,1
= = � 0.4827 ,  0 ,  0.4130 
£. 

Detection of fixed components :  By the following 

lemmas ,  the j-th element of solutions can be fixed and be 

eliminated from the solution space . 

Lemma 3.14. [12].  If for some ) ∈ 6 ,  �\�)
< = 0�  or ) ∈ 6</ 

then the equation i has just one minimum as �\< = 0� . 

Lemma 3.15. For a constraint ,  say i ,  if 6</ ≠ ∅ ,  then �' = 0 

for all � ∈ �  and all ) ∈ 6</ .  It means the component(s) j , 

 ) ∈ 6</ ,  can be eliminated from the solution space . 

Proof. Let � ∈ � = ⋂ �]]∈�  be arbitrary . 

� ∈ � �]
]∈� ⟹ � ∈ �<

 

⟺ x∀) ∈ 6 , �' ≤ 2@< − ;<'  ,∃) ∈ 6, �' = 2@< − ;<'  ,y ⟹ ∀) ∈ 6</ , �' ≤ 2@< − ;<' = 0 ,⟹ ∀) ∈ 6</ , �' = 0 .                        
Example 3.16. Consider the following feasible system  

¤0.2876 0.0912 0.5763 0.68340.54660.19170.7093
0.42580.14850.2363

 0.64450.45790.1195
0.6477
 0.7245
 0.6073¥ GHI� = ¤0.4214 0.48510.36220.5664 

¥ 

  Since 6V/ = 345 ,  according to Lemma 3.15,  the fourth 

component of any solution vector is fixed to 

zero .  Therefore ,  this component can be eliminated from the 

solution space as well as the fourth column of the coefficient 

matrix from consideration .  The maximum and minimal 

solutions are �[ = �0.4235,0.5444 ,  0.2665, 0
¢ and �\ =
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�0.4236 ,  0 ,  0.2666 ,  0
¢  ,  respectively . 

Lemma 3.17. Let � ≠ ∅ .  If there are O ∈ 2 and ) ∈ 6 such 

that @< = ;<' = 1 ,  then the j-th element of solutions can be 

fixed as one and be eliminated from the solution space . 

Proof. We have: χQ =  3x ∈ [0,1]# : max¦∈§ �aQ¦ + x¦
 = 2bQ=  Rx ∈ [0,1]#:  ∀k ∈ J ,  aQ¦ + x¦ ≤ 2 , ∃j© ∈ J ,  aQª« + xª« =  2U .   
 Since ;<] , �] ∈ [0,1] ,  for all g ∈ 6and ;<' = 1 ,  the set �< 

can be simplified as follows : 

 
 χQ = 3 x ∈ [0,1]# :  �let j© = j
aQª + xª =  2 5= R x ∈ [0,1]# :  xª = 2 −  aQª = 1 U  

Example 3.18. Consider ,  

�0.4425 1.0000 0.35930.7364 0.3948  0.68340.7041 0.4424 0.0197� 0HI� = �1.0000 0.83460.8185� 

 By Lemma 3.17,  the second element of solutions can be 

fixed as one and be eliminated from the solution space ,  since ;�/ = @� = 1.0000 .  The maximum and minimal solutions 

are  �[ = �0.9329 ,  1.0000 ,  0.9858
¢  and �\ = �0.9329 ,  1 . 0000, 0
¢ ,  respectively . 

Lemma 3.19. Suppose X�O
 = 3)<5 (a singleton set) ,  for all O ∈ 2 .  If there is a )l ∈ 6 such that ℐ�)l
 ≠ ∅ (see Notation 

2.2) ,  then  

 (1) 2@<m − ;<m'm = 2@<� − ;<�'m  ,  for all Ol, O� ∈ ℐ�)l
. 

 (2) for all � ∈ � ,  the )l -th element of solutions can be 

fixed as 2@< − ;<'m  ,  O ∈ ℐ�)l
 ,  and the component )l  can be 

eliminated from the solution space . 

Proof. (1) If ℐ�)l
 is singleton then Ol = O� and the proof is 

trivial .  Now ,  assume Ol, O� ∈ ℐ�)l
 and Ol ≠  O� .  Let � =���, … , ��
 ∈ �be an arbitrary feasible solution .  We have : maxª∈§ : aQª + xª= = 2bQ i = il, i�
   ⟺ � ∀j ∈ J , aQª + xª ≤ 2bQ∃¬Q̅ ∈ J , a<®̅L + x®̅L = 2bQ y i = il, i� 

⟺ �∀j ∈ J\3jQ5 , xª ≤ 1 < 2bQ − aQª �because  j ∉ G�i

j = jQ,      xª ≤ 2bQ − aQª ≤ 1                                    ∃¬Q̅ ∈ J ,    x®̅L = 2bQ − a<®̅L
y

i = il, i�. 
Therefore ,  it should be ¬<̅ = )< ,  for O = Ol, O� .  On the other 

hand ,  by the assumption ,  we have )<m = )<� = )l .  Thus , 

 �'Lm = �'L� = �'m  ,  that is ,  2@<m − ;<m'm = 2@<� − ;<�'m .   

 (2)   By assumptions ,  the vector e is unique ,  � =���1
, … , ��4

 = �)�, … , )>
 .  It is sufficient to prove �[' = :�\��
='  : 

       �[' = :�\��
='⟺ minQ∈~ �['< = maxQ∈~ � �\< :��O
=�' = maxQ∈~ � �\< �)<
�'⟺ minQ∈~ :min:2bQ − aQª, 1== = maxQ∈~ x2bQ − aQª, j = jQ,  0 ,            otherwise ,y⟺ minQ∈ℐ�ª
 
:2bQ − aQª= = maxQ∈ℐ�ª
:2bQ − aQª=.

 

   According to (1) ,  the last statement is true . 

Example 3.20. Consider ,  

�0.1949 0.7701 0.11710.1759 0.0602 0.01950.0773 0.9243  0.2973� GHI� = �0.62420.56350.7013�. 

  By computing 2@< − ;<'  ,  for all i, j ,  we have X�1
 = 325 , 

 X�2
 = 315 ,  X�3
 = 325 ,  ℐ�1
 = 325  ,  ℐ�2
 = 31,35  and ℐ�3
 = 35 .  By Lemma 3.19 ,  the first and second elements of 

solutions can be fixed as 0.9510  and 0.4782 ,  respectively ,  and can be eliminated from the 

solution space .  The maximum and minimal solutions 

are  �[ = �0.9510 ,  0.4782 ,  1.0000
¢  and �\ = �0.9510 ,  0.4782 ,  0
¢, respectively. 

Corollary 3.21. If there is a ) ∈ 6 such that the values of 2@< − ;<' are equal for all O ∈  2 ,  that is: ∃j ∈ J, ∀i�, i/ ∈ I , 2bQ� − aQ�' = 2bQ� − aQ�', 
then the j-th element of solutions can be fixed as 2@< − ;<' 

and be eliminated from the solution space . 

 According to this corollary ,  in Example 3.13 the first 

component of solutions can be fixed as 0.4827  and be 

eliminated from the solution space .  Note that when omitting 

a column of the coefficient matrix causes a zero row ,  the 

corresponding constraint is redundant and should be 

eliminated from consideration .  

Corollary 3.22. If 6</ ≠ ∅ ,  for all O ∈ 2 and ⋃ 6</<∈� = 6 then �[ = �\ = 0 .  It means � = 30�5 . 

  Identification of equivalence operation:  

Corollary 3.23. [12].  When for some O ∈ 2 and ) ∈ 6 , 

 ) ∉ X�O
 ,  then the value of ;<'  has no effect on the solution 

space of (3.1) and can be changed to zero .  In other 

words ,  changing ;<'to zero is an equivalence operation (see 

Definition 2.4) . 

Corollary 3.24. [12]. When for some ) ∈ 6and O�, O/ ∈ 2 , 

 2@<� − ;<�' < 2@<� − ;<�' ,  then the value of ;<�' has no effect 

on the solution space of (3.1) and can be changed to zero .  In 

other words ,  changing ;<�'  to zero is an equivalence 

operation . 

Proof. It is sufficient to prove ;<�' + �' < 2@<�  ,  for all � ∈ � .  Let � ∈ �  be arbitrary .  Since  max]∈K:;<�] + �]= =2@<�  ,  we have ;<�] + �] ≤ 2@<�  ,  for all g ∈ 6  ,  thus , ;<�' +�' ≤ 2@<�  .  On the other hand ,  if  ;<�' + �' = 2@<�  ,  then 

according to the assumption we have   ;<�' + �' = ;<�' +  2@<_/ −   ;<�' > 2@<�  .  Hence , max¦∈§:;<�] + �]= ≥ ;<�M +�' > 2@<�  ,  which contradicts with � ∈ �<� and therefore , 

 ;<�' + �' < 2@<_/ ,  for all � ∈ � . 
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Example 3.25. Consider the following feasible system  

 �0.1382 0.5078  0.85670.3844 0.6957 0.62790.4504 0.4737 0.9497� GHI� = �0.7122 0.59780.7587 

�.     (3.8) 

 Computing  <' = 2@< − ;<'  ,  for all O ∈ 2  and ) ∈ 6 results 

in : 

¡ = �1.2862 0.9166  0.56770.8113 0.4999 0.56771.0670 1.0438  0.5677�. 
  According to Corollary 3.23,  changing  ;�� ,  ;V�and  ;V/ to 

zero is an equivalenceoperation ,  since 1 ∉ X�1
 = 32 ,  35  , 

 1 ∉ X�3
 = 335$ and 2 ∉ X�3
  .  Additionally ,  by Corollary 

3.24 ,  the value of  ;�/has no effect on the solution space of 

(3.8) and can be changed to zero (since ¡�/ = 0.9166 >¡// = 0.4999) .  Thus ,  the system converts to  

�0.0000 0.0000  0.85670.3844 0.6957 0.62790.0000 0.0000 0.9497� GHI� = �0.7122 0.59780.7587 

�. 
  By solving the reduced system ,  we obtain the maximum 

solution , 

 �[ = �0.8113 ,  0.4999 ,  0.5677
£, 

 and the minimal solutions as follows: �\:�3,1,3
= = �0.8113,0,0.5677
£, 

�\:�3,2,3
= = �0,0.4999 ,  0.5677 
¢, 
�\:�3,3,3
= = �0,0 ,  0.5677
¢. 

  4. Linear Fractional Multi-objective 

Optimization Problems Subject to 

Fuzzy Relational Equations 

 Here ,  we consider  

min 
��
 = ´µ��¶
·��¶
 , … , µ¸�¶
·¸�¶
¹s. t.                                                   AoHIx = b           x ∈ [0,1]# 

                      (4.1) 

where   7]��
 = º]£ � + º]l , »]��
 = ¼]£ � + ¼]l  ,  g = 1, … , 8  , 

 8 ≥ 2  ,  º]£ = �º]�, … , º]�
 ∈ ℛ�  ,  ¼]£ = �¼]�, … , ¼]�
 ∈ ℛ� , 

 º]l  and ¼]l  are two constant numbers and GHI  is the max-

average composition .  Using the improved � -constraint 

method ,  we try to find the efficient solutions .   

 First ,  some assumptions and results are mentioned on the 

characteristic of (4.1) .  We denote by �½ ,  the set of all 

efficient solutions of (4.1) ,  that is  �½ = 3 �̅ ∈ [0,1]�:  ∄� ∈ � , 
��
 ≤ 
��̅
5 ,   

which is non-empty regarding Assumptions 4.1 . 

Assumptions 4.1. Let 

 1 .  7] and »]  be continuous real valued functions on � = 3� ∈ [0,1]�: 9G¿� = @5 .   

 2 .  »]��
be positive for all g ∈ 7 = 31, … , 85 and all � ∈� .  Clearly ,  the generality of the problem is not to be lost by 

this assumption .   

 3 .  � be a non-empty and compact set in ℛ� .   

 4 .  º]£ and ¼]£  be the k-th row of À = :º<'=�×�  and Á =:¼<'=�×� ,  respectively .   

 5 .  Á ∈ [0,1]�×�and |À| = :Ãº<'Ã= ∈ [0,1]�×�. 

 6 .  Àl = :º�l, … , º�l= ∈ [−1,1]�×� and Ál = :¼�l, … , ¼�l= ∈[0,1]�×� . 

Definition 4.2. Problem (4.1) is called incomplete ,  if there 

is a gl ∈ 7 such that ¼]m£ = 0� ∈ ℛ� . 

Definition 4.3. The objective functions of (4.1) are in 

conflict if  ��l ∩ �/l ∩ … ∩ ��l = Å  ,   where �]l  ,  g = 1, … , 8 , 

denotes the set of optimal solutions for the problem  

 min �
]��
 = ÆÇ��
ÈÇ��
 : � ∈ � ,  »]��
 > 0!  , 
  and � is a nonempty and compact set in ℛ�. 

 Now ,  we deal with Theorems 4.4 – 4.5 which are similar 

to those of Nykowski and Zolkiewski [19]. 

Theorem 4.4. Suppose �̅ ∈ �½ . 

 1 .  If 
]��
 = ÆÇ��
ÈÇ��
 > 0 ,  for all g ∈ 7  and all � ∈ �  then �̅ ∈ �É where  

�É = argmin �Γ��
 = �7���
, … , 7���
, −»���
, … , −»���
� : � ∈ �!= 3�̅ ∈ [0,1]� : ∄� ∈ � ,  Γ��
 ≤ Γ��̅
5 .                                                  

 That is �½ ⊂ �É .  

 2 .  If 
]��
 = ÆÇ��
ÈÇ��
 < 0 ,  for all g ∈ 7 and all � ∈ �  then �̅ ∈ �Í (that is �½ ⊂ �Í) where  �Î = argmin                   RÏ��
 = :7���
, … , 7���
, »���
, … , »���
=: � ∈ �U      = 3�̅ ∈ [0,1]� : ∄� ∈ � ,  Λ��
 ≤ Λ��̅
5 .  

Proof. 1. Let �̅ ∉ �É ,  that is ,  there is an �l ∈ � such that Γ��l
 ≤ Γ��̅
  .  Then ,  there is a non-negative vector ¼ ∈ℛ/�such thatΓ��̅
 = Γ��l
 + ¼ .  Thus , 

  
]��̅
 = ÆÇ��̅
ÈÇ��̅
 = ÆÇ��m
NÑÇÈÇ��m
dÑÒÓÇ  ≥ ÆÇ��m
ÈÇ��m
 = 
]��l
 , 
g = 1, … , 8 .  

 Additionally ,  there is an ` ∈ 7  such that ¼Ô + ¼�NÔ >0 ,  and 
Ô��̅
 > 
Ô��l
  .  Therefore ,  
��̅
 ≥ 
��l
  ,  that 

is ,  �̅ ∉ �½ .  

 2 .  Let �̅ ∉ �Í ,  that is ,  there is an �l ∈ � such that Λ��l
 ≤Λ��̅
  .  There is a non-negative vector ¼ ∈ ℛ/� such that Λ��̅
 = Λ��l
 + ¼ .  Thus ,  for g ∈ 7 ,  


]��̅
 = 7]��̅
»]��̅
 = 7]��l
 + ¼]»]��l
 + ¼�N] ≥ 7]��l
»]��l
 + ¼�N]  . 
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1»]��l
 + ¼�N] ≤ 1»]��l
   and  7]��l
 < 0                                            ⟹  7]��l
»]��l
 + ¼�N] ≥ 7]��l
»]��l
 . 
   Therefore ,  


]��̅
 ≥ 7]��l
»]��l
 + ¼�N] ≥ 7]��l
»]��l
 = 
]��l
 .  
  Similar to part (1) ,  it can be shown that �̅ ∉ �½which is a 

contradiction .  

Theorem 4.5.  Suppose �̅ ∈ �½  .  If 
]��
 = ÆÇ��
ÈÇ��
 > 0 ,  for g ∈ 31, … , ℎ5  and 
]��
 = ÆÇ��
ÈÇ��
 < 0  ,  for g ∈ 3ℎ +1, … , 85 (for all � ∈ �) then �̅ ∈ �× where  

 �× = argmin3Φ��
: � ∈ �5 = 3�̅ ∈ [0,1]�: ∄ � ∈� ,     Φ��
 ≤ Φ��̅
5 ,  
where  

Φ��
 = �7���
, … , 7���
, −»���
, … , −»Ù��
, »ÙN���
, … , »���
�  . 
 That is �½ ⊂ �× . 

Proof. Let �̅ ∉ �×  ,  that is ,  there is an �l ∈ �  such that Φ��l
 ≤ Φ��̅
  .  Thus ,  there is a non-negative vector ¼ ∈ℛ/� such that Φ��̅
 = Φ��l
 + ¼  .  Similar to Theorem 

4.4 ,  the proof can be completed .  

Remark 4.6. Theorems 4.4 and 4.5 can also be applied on 

an incomplete linear fractional multi-objective problem . 

Remark 4.7. According to the mathematical programming 

theory ,  some constant values can be added to each objective 

function in (4.1),  with no effect on the optimal solutions 

set .  This means that ;ÚÛ4O+RÜ��
 = :
���
 +¼�, … , 
���
 + ¼�
: � ∈ �U = �½  where :¼�, … , ¼�= ∈ℛ� .  Therefore ,  we are always able to consider the equivalent 

MOP problem with positive objective functions on � instead 

of the original problem (4.1) ,  using the following algorithm : 

Algorithm 4.8. 

 1 .  Given MOP (4.1) and let � > 0 be a small user-defined 

scalar ,  say � = 10dÝ .   

 2 .  Define a constant vector Þ = :Þ�, … , Þ�= ∈ ℛ� as 

follows :  

Þ] = � 0,          If  
]��
 > 0, 
GÚ  all � ∈ �,−7ß]»ß] + � , otherwise ,                          y 
where   7ß] = min�∈� 7]��
  and   »ß] = min�∈� »]��
  ,  for g ∈ 7 .   

 3 .  The equivalent problem of (4.1) with positive objective 

functions on � is  

  min�∈� Ü��
 = :
���
 + Þ�, … , 
���
 + Þ�= .            (4.2) 

  Since there are finitely many objective functions �8 <∞
  ,  and in the course of the algorithm ,  two linear 

programming problems each with a single objective function 

are solved when there is an � ∈ � and a g ∈ 31, … , 85such 

that 
]��
 < 0 ,  Algorithm 4.8 terminates .  Moreover ,  the 

following lemma shows the efficiency of Algorithm 4.8. 

Lemma 4.9. The objective functions of (4.2) are positive 

on � . 

Proof. Consider an objective function 
]��
 and an�l ∈ � 

with 
]��l
 ≤ 0 .  We show that 
]��l
 + Þ] > 0 .  

 


]��l
 + Þ] = 
]��l
 + dÆßÇÈßÇ + �                                   = 
]��l
 + d áQ#â ÆÇ��
áQ#â ÈÇ��
 + �
                                   = 
]��l
 + áã¶â:dÆÇ��
=áQ#â ÈÇ��
 + � 

                                ≥  
]��l
 + −7]��l
»]��l
 + �                           = 
]��l
 − 
]��l
 + �  = � >  0 

 

Remark 4.10.  By Theorem 4.4 ,  the linear multi-objective 

problem related to (4.2) is  min�∈� ä���
 = :7���
 + Þ�»���
, … , 7���
 + Þ�»���
 ,y y − »���
, … , −»���
 =                                 (4.3) 

 and we have �å ⊆ �É æ
 . 

  Assume that the FRE system (3.1) is simplified as much as 

possible by the results in Section 3.  Let � be the reduced 

feasible set .  Using Assumption 4.1,  problem (4.3) can be 

reformulated as  

 4O+�∈� ä���
 = ��º�£ + Þ�¼�£
� + �º�l + Þ�¼�l
, …  , :º�£ +Þ�¼�£ 
� + :º�l + Þ�¼�l=,  − ¼�£� − ¼�l, … , −¼�£ � − ¼�l�  .    (4.4) 

By omitting the constant values of the objective 

functions ,  we have  

4O+�∈� äç��
 = ��º�£ + Þ�¼�£
�, …  , :º�£ + Þ�¼�£ =�,  −¼�£�, … , −¼�£ ��  .                 (4.5) 

 Note that �Éè = �Éæ. 

 Now ,  we find �Éè by applying the improved � -constraint 

method (2.4) on problem (4.5) .  Note that the set of efficient 

solutions of problem (4.1) ,  �½  ,  is a subset of�Éè  ,  i.e .  �½ ⊆�Éè ⊆ � .  Hence ,  to obtain �½  ,  it is sufficient to solve the 

following problem on a smaller feasible set �Éèinstead of � :  

min�∈�éè � = 
��
 = �
���
, … , 
���
�. 
 Since�Éèis a discrete set ,  a p dimension vector can be related 

to each individual of �Éèin which the k-th element individually 

evaluates the k-th objective function .  The efficient solutions 

can be obtained by comparing such vectors . 

 5. Numerical Testing 

Example 5.1. Here ,  we are going to apply the proposed 

method in Section 4 to solve a constrained linear fractional 

optimization problem .  Consider the following randomly 
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generated consistent constrained optimization problem . min 
��
s. t .
ê0.4588 0.6620 0.7703 0.35030.6620 0.4162 0.8419 0.83290.2564 0.0106 0.4363 0.42730.8700 0.2649 0.3181 0.1193ë GHI� = ¤0.57700.6786 0.47580.7826¥

� ∈ [0,1]ì ,
,     

where   
: ℛì → ℛV ,  is defined as  

 
���
 = dl.ìÝlV�_�Nl.î�Ýì�_/Nl.�VVï�_VNl.îÝìV�_ìdl.ðïìVl.ÝVÝ/�_� N  l.ñð���_/Nl.ðï�ì �_V N  l.ñVÝî�_ìNl.îñïð, 

 
/��
 = l.ïîñ��_�dl.ðVññ �_/dl./ìï/�_V  d l.ïlð��_ì  d l.ñ/ñÝl.�ì���_�Nl.lVìî �_/Nl.��/î�_VNl.îðì/�_ìNl.ì/ñî    ,  


V��
 =  dl.ñ/Vî�_�N  l./Ýìï�_/  d l.îïìð�_Vdl.l/�ï�_ìdl.l/ðîl.ïV//�_�Nl.ìÝÝð�_/Nl.ïìV/�_V N  l.ìðÝñ�_ìNl.lïñ/  . 

 First ,  according to results in Section 3,  we reduce the 

feasible set of the problem as much as possible .  According to 

Theorem 3.12 and Corollary 3.21,  the redundant third and 

fourth constraints can be ignored and the first component of 

solutions is fixed to 0.6952  and this component can be 

eliminated from the solution space as well as the first column 

of the coefficient matrix from consideration .  Thus ,  the 

constrained linear fractional optimization problem is reduced 

to  min 
̅��
s. t.                                                                                                          �0.6620 0.7703 0.00000.0000 0.0000 0.8329 
� GHI� = �0.5770 0.6786 �� ∈ [0,1]V ,

 

 where the reduced objective function 
:̅ ℛV → ℛV, is 


�̅��
 = l.î�Ýì�_�Nl.�VVï�_/Nl.îÝìV�_Vdl.ðïìVl.ñð���_�Nl.ðï�ì �_/ N  l.ñVÝî�_VNl.îñïð , 


/̅��
 = dl.ðVññ �_�dl./ìï/�_/dl.ïlð��_V  d l.ñ/ñÝl.lVìî �_�Nl.��/î�_/Nl.îðì/�_VNl.ì/ñî  , 


V̅��
 = l./Ýìï¶_�  d l.îïìð¶_/dl.l/�ï¶_Vdl.l/ðîl.ìÝÝð¶_�Nl.ïìV/¶_/ N  l.ìðÝñ¶_VNl.lïñ/ . 

 The maximum solution and the minimal solutions of the 

feasible region are �[ = �0.4920,0.3837,0.5243
£  , �\� =�0.4920,0,0.5243
£  and �\/ =�0,0.3837,0.5243
¢ ,  respectively .  Solving the problem 

following the method described in Section 4,  it is concluded 

that �̅½ = 3�1� = �0.4920,0.0000,0.5243
£ ,yy              �1/ = �0.0000,0.3837,0.5243
£5, 
�̅�1�
 = �−0.3323, −1.9329,0.1715
 

and  
�̅�1/
 = �−0.4835, −1.3997, −0.4199
. 

Therefore ,  by adding the first component of solutions with 

the value 0.6952 ,  the original solutions are obtained as �½ = 3�1� = �0.6952,0.4920,0.0000,0.5243
£ ,y              y�1/ = �0.6952,0.0000,0.3837,0.5243
£5, 
 
��1�
 = � −  0.4091, −1.0945, −0.3075
 

and  

  
��1/
 = �−0.5116, −0.6457, −0.6140
.   

 In Figures 1 and 2,  different sections of the original 

feasible region and different sections of the original objective 

functions with the optimal solutions are shown ,  respectively .  

 In addition ,  Figures 3 and 4 show different sections of the 

reduced feasible region and different sections of the reduced 

objective functions with the optimal 

solutions ,  respectively .  The fixed variables and their values 

are shown in each figure . 

 

Figure 1. The feasible space of Example 5.1 
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Figure 2. The objective function and the optimal solutions of Example 5.1 

 

Figure 3. The reduced feasible space of Example 5.1 
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Figure 4. The reduced objective function and the optimal solutions of Example 5.1 

 6. Conclusions  

In this paper ,  we obtained the efficient solutions of linear 

fractional multi-objective optimization problems (LFMOP) 

subject to a system of fuzzy relational equations (FRE) using 

the max-average composition .  First ,  some theorems and 

results were presented to thoroughly identify and reduce the 

feasible set of the FRE .  Then ,  the LFMOP was converted to a 

linear multi-objective optimization problem using Nykowski 

and Zolkiewski's approach .  Finally ,  the efficient solutions 

were obtained by applying the improved � -constraint 

method .  We tested the efficiency of the proposed method by 

solving a consistent test problem . 
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