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Abstract: The present article aims to illustrate how the Adaptive Type-II Progressive Hybrid censoring scheme can be used to
make statistical inferences regarding the shape parameters of the Kumaraswamy distribution. By adopting this scheme, one can
reduce the total testing time and the cost associated with the failure of the units. Best of all, one can increase the effectiveness
of the statistical analysis while reducing the total test time. The maximum product of spacings method (MPS) in classical
estimation settings is highly effective. According to several authors, this method is a superior alternative to the maximum
likelihood estimation method (MLE), which delivers more accurate estimates than the maximum likelihood estimation method.
Our goal in this article is to estimate the shape parameters of the Kumaraswamy distribution by utilizing the MPS method.
Asymptotic normality properties of the estimators are implemented to obtain approximate confidence intervals. In addition,
bootstrap confidence intervals are calculated. Monte Carlo simulations have been carried out to compare the MPS and MLE
methods. In order to assess the effectiveness of the proposed procedure, a numerical example based on real data is presented.
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1. Introduction

In survival analysis, a life test is conducted on a sample
of size n to observe their failure times. A time-to-failure
model is then developed based on the data collected during the
test. Nevertheless, such a strategy would be expensive, time-
consuming, and impractical. Furthermore, time constraints
and facilities limitations may require the experimenter to
halt the study before recording the failure times for all
subjects. In addition, it may be necessary to exclude some
functioning test subjects from the test to gather degradation-
related information about failure times or for another research
endeavor. It is generally the case when the tested subject
is expensive, such as when clinical equipment is needed.
Occasionally, failures are deliberate and predictable. In such
cases, censored samples are created. Progressive censoring is
widely used in life testing studies to address various concerns
that experimenters may have, such as reducing total test

time, conserving experimental units, and developing efficient
estimation methods. Nevertheless, there must be a trade-off
between these three concerns to reduce the experiment’s cost
and time.

There are two main types of censoring: Type-I and Type-
II. For Type-I censoring, the experiment is terminated at
a predetermined time T, while for Type-II censoring, the
experiment is terminated once a specific number of failures,
m, has been observed. To further reduce experimental time
and cost, a hybrid censoring scheme was used, which is a
mixture of Type-I and Type-II censoring schemes. As a
result of this scheme, the experiment ends at a predefined
time. Nevertheless, none of these censoring schemes allow
for intermediate removal of active subjects throughout the test
other than at the final termination point.

Due to this inflexibility, various progressive censoring
schemes have been developed in the literature to model the
removal of subjects during lifetime experiments. A significant
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number of authors have discussed inference under progressive
censoring with different lifetime distributions. In addition to
Balakrishnan and Asgharzadeh [3], Kim et al. [19], Helu and
Samawi [15], Helu et al. [16] and recently, Nassar et al. [25].
A comprehensive analysis of progressive censoring is provided
by Balakrishnan and Cramer [4].

In Progressive Type-II censoring, n independent items are
placed at the same time on a life testing experiment and only
m(< n) failures are completely observed. The censoring
occurs progressively in m stages as follows, when the first
failure is observed, a random sample of sizeR1 is immediately
drawn and removed from the test. Then after the failure of the
second item, another sample of size R2 is randomly selected
and removed from the remaining survival units. Continuing
this process until the mth failure, Xm:m:n, is observed and all
remaining Rm = n − R − · · · − Rm−1 −m surviving units
are removed from the experiment, with X1:m:n ≤ X2:m:n ≤
· · · ≤ Xm:m:n being the ordered failure times resulting from
the Progressively Type-II censored experiment. For notation
simplicity, we will write Xi for Xi:m:n.

One major drawback of the Progressive Type-II censoring
scheme is that the experiment may take a long time if the
subjects are highly reliable. Kundu and Joarder [22] proposed
the Progressive Type-II hybrid (P-II hybrid) censoring scheme
to address this issue. The P-II hybrid scheme is an
amalgamation of the hybrid and the progressive censoring
schemes. It is considered to be more flexible according to
Kundu and Joarder [22], Panahi [26], and Wang [38]. A P-
II hybrid censoring experiment terminates at a predetermined
time T ∗=min(T,Xm), where T > 0 and the integer m are
pre-assigned. It is pertinent to note that, in this scheme,
the total time required to terminate the experiment does not
exceed T . However, the P-II hybrid-censoring scheme has
the disadvantage that the number of observed failures is
random. As a result, it is possible that it will be a very small
number (even zero), which means that traditional statistical
inference methods may not be valid or may not be efficient
in estimating the model parameter(s). In order to overcome
this disadvantage, Ng et al. [24] introduced an adaptation
of the P-II hybrid censoring scheme called the Adaptive
Type-II Progressive Hybrid Censoring (Adaptive-IIPH). This
enhanced scheme, not only saves the total test time and the
cost induced by the failure of the units but also increases the
efficiency of the statistical analysis. This enhancement also
ensures that m items are obtained.

In recent years, the Adaptive-IIPH censoring scheme has
been studied by a vast number of authors, among others,
we list Cui et al. [8], Ye et al. [40], Zheng and Shi
[41], Kohansal and Shoaee [20], Yan and Wang [39] and
recently Panahi and Asadi [27]. The maximum likelihood
method (MLE) is often regarded as one of the most powerful
and acceptable approaches for drawing statistical inferences
due to its consistency, sufficiency, invariance, asymptotic
efficiency, and, more importantly, ease of calculation. Despite
this, Pitman [28], Cheng and Amin [6], and Ranneby [31]
demonstrated that the MLE method breaks down due to
unboundedness of the likelihood in situations such as mixtures

of continuous distributions, heavy-tailed distributions, and J-
shaped distributions. Huzurbazar [17] said that when the
range depends upon the parameter, the likelihood equation has
no consistent solution under certain conditions. Clearly, this
demonstrates the likelihood principle’s flaw, which leads to
estimates approaching the smallest order statistic, resulting in
an unbounded likelihood function in the constrained parameter
space. Consequently, parameter estimates may be inconsistent;
see Harter and Moore [14].

Considering these shortcomings, Cheng and Amin [6]
proposed a maximum product of spacings (MPS) estimator
that would overcome these problems by returning valid
results across a broader range of distributions. Cheng and
Amin’s method is more intuitive, and some might see it as
a pragmatic answer to the challenges associated with the
likelihood (Titterington [37]). Ranneby [31] further justified
using the MPS estimator by showing that it possesses
similar properties as the MLE, including asymptotically
sufficient performance, but is more robust for various classes
of problems. Shao and Hahn [33], Cheng and Amin [6], and
Ghosh and Jammalamadaka [13] showed that under classical
setup the MPS method is able to provide estimators that
possess most of the large sample optimum properties like
sufficiency, consistency, and asymptotic efficiency, which are
also being possessed by the MLE. Cheng and Amin [7]
used examples to demonstrate the unbiasedness, consistency,
and efficiency features of the MPS. Most importantly, the
invariance property of theMPS is similar to that of theMLE,
as shown by Coolen and Newby [7].

In reliability studies, small sample sizes are prevalent, and
the MPS estimators outperform the MLE in this aspect. As
a result, the MPS is an excellent method for dependability
research (Anatolyev and Kosenok [2]). El-Sherpieny et
al. [11] estimated the parameters of the power Lomax
distributed using the maximum product of spacing when data
are Progressively Type-II hybrid censoring.

Almetwally and Almongy [1] sought to estimate the
parameters of the generalized power Weibull distribution under
Progressive Type-II censored samples using the maximum
product of spacing, the maximum likelihood, and the
Bayesian approaches. Coolen and Newby [7] developed
a Bayes estimator based on the MPS method, which is
compatible with the usual posterior distribution as theMPS is
asymptotically equivalent to the likelihood function. Singh et
al. [34] proposed a Bayesian model for analyzing a completely
observed sample using an exponential distribution. The model
was further developed by Singh et al. [35] for a censored
sample from a generalized inverted exponential distribution.

Pyke [30] showed that for an ordered sample of size m
drawn from a population with cumulative distribution function
F (x, θ) there are (m+ 1) first order-spacings, as follows:

D1 = F (x1, θ) ,

Dm+1 = 1− F (xm, θ) ,

Di = F (xi, θ)− F (xi−1, θ) i = 1, 2, ...,m, (1)
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The Kumaraswamy distribution which is denoted by
Kum(α, λ) provides a population model which is useful in
several areas of statistics, including life testing, reliability and
hydrological studies. The probability density function (pdf ),
and the cumulative distribution function (cdf ) of Kum(α, λ)
are given, respectively, by

f(x) = αλxλ−1
(
1− xλ

)α−1
, 0 < x < 1; (2)

F (x) = 1−
(
1− xλ

)α
, (3)

This distribution is unimodal if α, λ > 1, uniantimodal if
α, λ < 1, increasing if α < 1 and λ > 1, decreasing if λ < 1
and α > 1 or constant if α = λ = 1. Figure 1 presents
some of these cases for certain values of the shape parameters.
In addition, Kum(α, λ) provides a large number of well-
established distributions, including the Lomax distribution
when α = 1, the beta type II (inverted beta) distribution when
λ = 1, the log-logistic (Fisk) distribution when α = λ = 1,
the inverted Weibull when α → +∞, and the generalized
exponential when λ→ +∞.

Figure 1. Shape of Kumaraswamy distribution for various combinations of α and λ.

The Kum(α, λ) is more appropriate for describing
hydrological data such as daily rainfall and daily stream flow
than the beta distribution (Kumaraswamy [21]; Nadarajah
[23]; Jones [18]). Among its other advantages are
its tractability under linear transformation as well as
exponentiation, the simple formula to generate a random
variate, the ability to reproduce Gaussian distributions or
extreme value distributions (see Sunder and Subbiah [36]), as
well as a simple formula for moments of order statistics, and
the ability to fit skewed data not adequately suited to existing
distributions (Jones [18]).

The Kumaraswamy distribution has received considerable
attention in the literature and has been discussed by many
authors, among others, Fletcher and Ponnambalam [12] used
Kum(α, λ) to model reservoir storage volume. Sundar and
Subbiah [36] used Kum(α, λ) to fit ocean wave data; Seifi et
al. [32] used the Kum(α, λ) to model the data taken from
a simple voltage divider with two resistors; Ponnambalam et
al. [29] used the Kumaraswamy distribution to approximate
tolerance ranges for non-symmetric yield distributions.

On the basis of Adaptive-IIPH data, MPS estimators are
used to estimating the shape parameters of the Kumaraswamy
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distribution, and this approach is compared with the
conventional MLE. Currently, we are unaware of any
literature article that discusses the MPS method to estimate
the shape parameters of the Kumaraswamy distribution using
the Adaptive-IIPH scheme. Therefore, the main contribution
of this study is to propose a robust method for drawing
inference about the shape parameters of the Kumaraswamy
distribution based on Adaptive-IIPH censored data.

The contents of this article are organized as follows:
In Section 2, we introduce the notation and describe the
Adaptive-IIPH censoring scheme. A discussion of estimation
procedures is presented in Section 3. Here, point estimators
have been developed based on MLE and MPS methods
with a Kumaraswamy distribution as the underlying lifetime
distribution. Section 4 includes the development of asymptotic
and Bootstrap confidence intervals based on MLE and MPS
under a classical setup. A simulation study is reported in
Section 5 which elucidates the performance of the proposed
estimator based on the proposed censoring scheme. In Section
6, a real-life data set is analyzed in order to illustrate the
proposed methods of estimation. A summary of the results
and conclusions of this study is presented in Section 7.

2. Adaptive Type-II Progressive Hybrid
Censoring Scheme

Assume there are n units in a life-testing experiment and
the effective sample size m(< n) is determined in advance,

as well as the censoring scheme (R1, R2..., Rm), however,
the values of some of the Ri may change as the experiment
progresses. Suppose the experimenter provides an ideal total
test time T , however, we are allowed to extend the experiment
beyond T . If the mth failure occurs before time T (i.e.
Xm < T ), the experiment is carried out in the same way
as Progressive Type-II censoring and stops at time Xm with
the pre-fixed censoring scheme (R1, R2, ..., Rm). Otherwise,
if the experimental time has passed T , but the number of
observed failures has not yet reached m, we would leave as
many surviving units as possible, hoping to see more failures
in a short period time, allowing us to complete the experiment
in the most effective way possible (see David and Nagaraja
[9]), i.e. if Xj < T < Xj+1, j = 0, 1, . . . ,m − 1, we
do not withdraw any items from the experiment by setting

Rj+1 = Rj+2 = · · · = Rm−1 = 0 andRm = n−m−
j∑
i=1

Ri.

This setting can be seen as a design that guaranteesm observed
failure times while keeping the total test time not too far away
from the ideal test time T (see Figure 1). Note that if T = 0,
then we have a conventional Type-II censoring scheme, while,
if T → ∞, then the Adaptive-IIPH reduces to a Progressive
Type-II censoring scheme. If the failure times of the n subjects
originally on the test are from a continuous distribution with
cdf F (x) and pdf f(x), then the likelihood function as given
by Ng et al. [24] is:

f(x1, . . . , xm) = qj
m

Π
i=1
f(xi)

j

Π
i=1

[1− F (xi)]
Ri [1− F (xm)]R

∗
,

(4)

Where, R∗ = (n−m−
j∑
i=1

Ri), and qj =
m

Π
i=1

(
n−m−

min{i−1,j}∑
k=1

Rk

)

Figure 2. Schematic representation of Adaptive Type-II Progressive censoring. Case 1: Experiment terminates before time T, Case 2: Experiment terminates after time T.
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3. Parameter Estimation of the Kumaraswamy Distribution

3.1. Maximum Likelihood Method

Assume n independent subjects are tested, and the lifetime distribution of each unit is given by (2). Under the Adaptive-IIPH
censoring scheme R = (R1, ..., Rm), the ordered m failures are observed. Thus, according to (2), (3) and (4), the log-likelihood
function of α and λ based on an Adaptive-IIPH censored data is as follows:

lnL(α, λ) ∝ m ln(αλ) + (λ− 1)

m∑
i=1

ln(xi) + (α− 1)

m∑
i=1

ln(1− xλi ) +

j∑
i=1

αRi ln(1− xλi ) + αR∗ ln(1− xλm). (5)

Then, the MLEs of α and λ, denoted by α̂MLE and λ̂MLE respectively are the solutions of the following log-likelihood
equations

∂ lnL(α, λ)

∂α
=

m

α
+R∗ ln(1− xλm) +

m∑
i=1

ln(1− xλi ) +

j∑
i=1

Ri ln(1− xλi ), (6)

∂ lnL(α, λ)

∂λ
=

m

λ
− αR∗xλm lnxm

1− xλm
+

m∑
i=1

lnxi − (α− 1)

m∑
i=1

xλi lnxi
1− xλi

−
j∑
i=1

αRix
λ
i lnxi

1− xλi

It is worth noting that there is no explicit closed form solution to Eqs. 6 & 7. As a result, numerical methods based on the
SAS/IML language must be used to obtain the MLEs of α and λ.

3.2. Maximum Product of Spacings

Using Pyke (1965) and Eq. (3) the spacing is as follows:

D1 = 1−
(
1− xλ1

)α
,

Dm+1 = 1−
(
1− xλm

)α
,

Di =
(
1− xλi−1

)α − (1− xλi )α i = 1, 2, ...,m. (7)

Thus the maximum product of spacings (M ) under the Adaptive-IIPH scheme can be written as:

M =
m+1

Π
i=1

Di

j

Π
i=1

[1− F (xi)]
Ri [1− F (xm)]

R∗
,

Using Eqs. (3) and (7) we get:

M =
[
1−

(
1− xλ1

)α] (
1− xλm

)α(R∗+1) m

Π
i=2

[(
1− xλi−1

)α − (1− xλi )α]× j

Π
i=1

(
1− xλi

)αRi
.

With log-likelihood function:

lnM = ln[1− (1− xλ1 )α] + α (R∗ + 1) ln(1− xλm) +

m∑
i=2

ln
[
(1− xλi−1)α − (1− xλi )α

]
+

j∑
i=1

αRi ln(1− xλi ). (8)

The partial derivatives of Eq. (8) with respect to the unknown parameters are given as follows:

∂ lnM

∂α
=
−
(
1− xλ1

)α
ln
(
1− xλ1

)
1−

(
1− xλ1

)α + (R∗ + 1) ln
(
1− xλm

)
+

j∑
i=1

Ri ln
(
1− xλi

)
+

m∑
i=2

(
1− xλi−1

)α
ln(1− xλi−1)−

(
1− xλi

)α
ln(1− xλi )(

1− xλi−1
)α − (1− xλi )α , (9)
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∂ lnM

∂λ
=

αxλ1
(
1− xλ1

)α−1
lnx1

1−
(
1− xλ1

)α − α (R∗ + 1)xλm lnxm
1− xλm

−
j∑
i=1

αxλi Ri lnxi
1− xλi

−
m

α
∑
i=2

xλi−1(1− xλi−1)α−1 lnxi−1 − xλi
(
1− xλi

)α−1
lnxi(

1− xλi−1
)α − (1− xλi )α . (10)

The MPS of the model parameters are the solutions of
those non-linear equations after setting them equal to zero.
Because there are no explicit solutions to these equations,
iterative approaches using SAS/IML language are used.

4. Interval Estimation
Let x1 ≤ x2 ≤ xj ≤ · · · ≤ xm−1 ≤ xm denote

an Adaptive-IIPH censored sample from the Kumaraswamy
distribution with parameters α and λ. The two types of interval
estimation methods for the parameters of the Kumaraswamy

distribution, that we shall explore in this section are the
asymptotic and the bootstrap confidence intervals which was
proposed by Efron [10].

4.1. Asymptotic Confidence Intervals (A.CI)

In this subsection, the asymptotic confidence intervals for
the parameters of the Kum (α, λ) using the MLE and
the MPS methods based on the Adaptive-IIPH scheme
will be investigated. The interval estimation of the
parameters requires the variance-covariance matrix, which is
the approximate inverse of the Fisher information matrix

I−1
(
α̂, λ̂

)
=

[
−∂

2 lnL(α,λ)
∂α2 −∂

2 lnL(α,λ)
∂α∂λ

−∂
2 lnL(α,λ)
∂λ∂α −∂

2 lnL(α,λ)
∂λ2

]−1
(α,λ)=(α̂,λ̂)

=

 var (α̂) cov
(
α̂, λ̂

)
cov

(
λ̂, α̂

)
var

(
λ̂
)  .

Based on regularity conditions,
(
α̂MLE , λ̂MLE

)
≈ Normal

(
(α, λ) , I−1

(
α̂ML, λ̂ML

))
, where, I

(
α̂, λ̂

)
is the observed

information matrix. From Eqs. 6 & 7, we can easily get

∂2 lnL(α, λ)

∂α2
= −m

α2
, (11)

∂2 lnL(α, λ)

∂λ2
= −m

λ2
− αR∗ xλm (lnxm)

2

(1− xλm)
2 + (α− 1)

m∑
i=1

xλi (lnxi)
2(

1− xλi
)2 − j∑

i=1

αRi x
λ
i (lnxi)

2(
1− xλi

)2 , (12)

∂2 lnL(α, λ)

∂α∂λ
= −R

∗ xλm lnxm
1− xλm

−
m∑
i=1

xλi lnxi
1− xλi

−
j∑
i=1

Rix
λ
i lnxi

1− xλi
. (13)

Thus, the 100 (1− γ) % asymptotic two-sided
confidence intervals for α&λ are, respectively, given by:(
α̂± Z γ

2

√
var (α̂)

)
and

(
λ̂± Z γ

2

√
var

(
λ̂
))

, where Z γ
2

is the upper γ2 th percentile of the standard normal distribution.
Using the same algorithm, one can obtain the Fisher

information matrix for the estimators of theMPS method and
subsequently the confidence intervals for α and λ.

4.2. Parametric Bootstrap Confidence Interval (B.CI)

A parametric bootstrap interval, as opposed to a point
estimate, provides substantially more information about the
population value of the quantity of interest. Here we construct
the parametric bootstrap for θ = (α, λ) by using the percentile
bootstrap method which is demonstrated as follows.

1. Based on the original sample

x = {x1, x2, . . . , xj , . . . , xm−1, xm} calculate the

estimator of θ = (α, λ) and name it θ̂∗0 =
(
α̂∗0, λ̂

∗
0

)
.

2. Use θ̂∗0 to generate a new bootstrap sample{
x∗11, x

∗
21, . . . , x

∗
J1, . . . , x

∗
m−1, x

∗
m1

}
, then use this new

sample to calculate a new estimator θ̂∗1 =
(
α̂∗1, λ̂

∗
1

)
.

3. Step 2 should be repeated B times, where B is a large
number, e.g. B = 5000. At this point a set of estimates
have been obtained: θ̂∗ =

(
θ̂∗1, θ̂∗2, . . . , θ̂∗B

)
4. Sort α̂∗i and λ̂∗i in an ascending order, respectively.

Then, we have:
α̂∗i =

(
α̂∗(1), α̂∗(2), . . . , α̂∗(B)

)
λ̂∗i =

(
λ̂∗(1), λ̂∗(2), . . . , λ̂∗(B)

)
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5. The approximation 100 (1− γ) % confidence
intervals for α and λ are given, respectively, by[
α̂∗(

Bγ
2 ), α̂∗(1−

Bγ
2 )
]

&
[
λ̂∗(

Bγ
2 ), λ̂∗(1−

Bγ
2 )
]

5. Simulation Study
In this section, we undertake a simulation study to test

the performance of the various estimation methods that
we have discussed previously. We generate progressively
censored samples (Balakrishnan and Cramer (2014)) from the
Kumaraswamy distribution as follows:

1. Generate m independent U(0, 1) random variables
W1,W2, ...,Wm.

2. For given values of Progressive censoring scheme

R1, R2, ..., Rm, we set Ei = (i +
m∑

j=m−i+1

Rj), i =

1, ...,m. Vi = W
1/Ei
i , for i = 1, ...,m.

3. Consider ui = 1 − Vm × Vm−1 × ... × Vm−i+1,
i = 1, ...,m, then u1, ..., um is a Progressive Type-II
censored sample of size m from U(0, 1).

4. For given values of α and λ we set xi =

F−1(ui) =
[
1− (1− ui)

−1
α

] 1
λ

, i = 1, ...,m.

Finally, x1, x2, ..., xm is the required Progressive Type-
II censored sample of size m from the Kum(α, λ)
distribution.

5. Determine the value of j, where xj < T < xj+1 and
discard the sample xj+2, . . . , xm.

6. Generate the first m − j − 1 order statistics from a
truncated distribution f(x)

1−F (xj+1)
with sample size n −

j∑
i=1

Ri−j−1 as xj+2, . . . , xm.

7. Obtain the MLE and the MPS estimates of the model
parameters using iterative process.

We generate 5000 Adaptive-IIPH censored samples
from the Kumaraswamy distribution with (α, λ) =
(0.7, 0.7); (1.5, 3), two different T values: T1 = X 4∗m

5
;

and T2 = (Xm + 2) and different combinations of sample
sizes and effective sample sizes (n,m) : (n,m) =
(20, 14); (40, 30); (60, 50); (200, 140) are conducted with
three different censoring schemes (R1, ..., Rm). For simplicity
of notations, R = (0∗4) indicates R = (0, 0, 0, 0). The three
censoring schemes are shown below:

1. Censoring scheme (Cs) I : R1 = n − m,Ri = 0, for
i 6= 1.

2. Censoring scheme (Cs) II : Rm = n−m,Ri = 0, Ri =
0 for i 6= m.

3. Censoring scheme (Cs) III : R1 = Rm = (n −
m)/2, Ri = 0 for i 6= 1 & i 6= m.

The performance of the MLE and the MPS estimates for
α and λ is compared in terms of their absolute bias (Bias)
and their mean square error (MSE). Suppose θ̂i is the estimate
of θ for the i-th simulated data set, then the Bias and the

MSE are computed as follows: Bias = 1
5000

5000∑
i=1

∣∣∣θ̂i − θ∣∣∣ &

MSE = 1
5000

5000∑
i=1

(θ̂i − θ)2.

In addition, we compute 95% asymptotic confidence
intervals and symmetric bootstrap confidence intervals based
on 1000 bootstrap samples. We repeat the process 5000 times
and obtain the average lengths (L) of the confidence intervals.
All values are reported in Tables 1 - 4.

1. As shown in Tables 1 & 2, as the effective sample
size m increases, all estimators exhibit the property of
consistency, which means their MSE values approach
zero.

2. In addition, a smaller Bias is observed for the MLEs
as compared to the MPS when Xm < T . However,
“the opposite” holds true whenXm > T and theMPS-
Bias is larger than the MLEs.

3. The study also depicts that the estimates based on
MPS outperform the estimates based on the MLE
in terms of MSE values for all values of T,m, n
and different censoring schemes, demonstrating that
the MPS technique is useful in estimating the shape
parameters of the Kumaraswamy distribution.

4. For fixed n, m, and T , estimates based on Scheme I
perform better than the ones based on Schemes II, and
III, in terms of Bias and MSE values.

5. It should also be noted that the Bias of all MPS-
based estimates and MlE-based estimates, decrease as
the effective sample size m increases, as expected.

6. Overall, the simulation results suggest that with a large
effective sample size m(m ≥ 50), the differences in
MSE values between MLE and MPS methods of
estimation become minimal.

While Tables 1- 4 show Bias and MSE values for each
estimating method. Thus, it is crucial to understand how
each estimation method handles interval estimation. As
a consequence, at 0.95 confidence levels, we generate
asymptotic as well as parametric Bootstrap confidence
intervals. We calculated the average length of these intervals
and present our findings in Tables 3 and 4. Based on these
tables, the following conclusions can be drawn.

1. The Bootstrap confidence intervals have shorter average
length than the asymptotic confidence intervals. Further
more, the average length is narrower as effective sample
size m increases.

2. The confidence intervals based on MPS provides
smaller length as compared to the the MLE-based
estimators. Moreover, the average length of the
confidence intervals when T < Xm is slightly shorter
than when T > Xm.

3. The differences in terms of average interval length
between different censoring schemes is minimal. This
indicates that the censoring scheme has no effect on
confidence intervals.
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Table 1. Bias andMSE of the estimators of α and λ under different censoring schemes when α = 0.7, λ = 0.7.

T1 = X
[ 4m

5
]

T2 = X[m]+2

n m SC Estimation α λ α λ

Method Bias MSE Bias MSE Bias MSE Bias MSE

20 14 I MLE 0.0516 0.00622 0.0590 0.0062 0.1603 0.01133 0.1124 0.0080

MPS 0.1157 0.00413 0.1275 0.0049 0.0396 0.00481 0.0845 0.0051

II MLE 0.0743 0.00868 0.0697 0.0065 0.2289 0.02270 0.1421 0.0100

MPS 0.1167 0.00489 0.1261 0.0051 0.0263 0.00925 0.0446 0.0060

III MLE 0.0646 0.00768 0.0621 0.0061 0.1901 0.01543 0.1219 0.0082

MPS 0.1212 0.00465 0.1293 0.0049 0.0382 0.00581 0.0818 0.0051

40 30 I MLE 0.0203 0.00108 0.0355 0.0012 0.0716 0.00139 0.0653 0.0015

MPS 0.0755 0.00093 0.0796 0.0011 0.0354 0.00087 0.0541 0.0011

II MLE 0.0312 0.00135 0.0386 0.0012 0.0922 0.00200 0.0740 0.0016

MPS 0.0762 0.00106 0.0777 0.0010 0.0070 0.00122 0.0011 0.1212

III MLE 0.0271 0.00125 0.0346 0.0011 0.0831 0.00171 0.0676 0.0014

MPS 0.0792 0.00103 0.0798 0.0010 0.0349 0.00101 0.0515 0.0011

60 50 I MLE 0.0134 0.00031 0.0199 0.0004 0.0449 0.00044 0.0386 0.0005

MPS 0.0548 0.00030 0.0616 0.0004 0.0270 0.00033 0.0446 0.0004

II MLE 0.0159 0.00035 0.0204 0.0004 0.0514 0.00053 0.0411 0.0005

MPS 0.0556 0.00032 0.0605 0.0004 0.0055 0.00039 0.0290 0.0004

III MLE 0.0145 0.00034 0.0186 0.0004 0.0484 0.00049 0.0384 0.0005

MPS 0.0572 0.00032 0.0617 0.0004 0.0277 0.00035 0.0436 0.0004

200 140 I MLE 0.0020 0.00004 0.0037 0.0001 0.0126 0.00004 0.0101 0.0001

MPS 0.0291 0.00004 0.0335 0.0001 0.0190 0.00004 0.0274 0.0001

II MLE 0.0032 0.00005 0.0038 0.0000 0.0161 0.00006 0.0112 0.0001

MPS 0.0313 0.00005 0.0318 0.0001 0.0066 0.00005 0.0166 0.0001

III MLE 0.0023 0.00004 0.0028 0.0000 0.0097 0.00050 0.0097 0.0000

MPS 0.0315 0.00004 0.0318 0.0000 0.0025 0.00050 0.0252 0.0000

Table 2. Bias andMSE of the estimators of α and λ under different censoring schemes when α = 1.5, λ = 3.

T1 = X
[ 4m

5
]

T2 = X[m]+2

n m SC Estimation α λ α λ

Method Bias MSE Bias MSE Bias MSE Bias MSE

20 14 I MLE 0.1612 0.04474 0.1593 0.0687 0.4509 0.09408 0.3613 0.0875

MPS 0.2816 0.02476 0.5005 0.0644 0.0981 0.03238 0.3372 0.0623

II MLE 0.2448 0.07103 0.2080 0.0749 0.6097 0.19057 0.4275 0.0988

MPS 0.2799 0.03124 0.4958 0.0670 0.0708 0.05062 0.3225 0.0660

III MLE 0.2052 0.05858 0.1747 0.0688 0.5495 0.14619 0.3973 0.0903

MPS 0.2908 0.02862 0.5043 0.0646 0.0872 0.04275 0.3265 0.0625

40 30 I MLE 0.0686 0.00697 0.0968 0.0136 0.2007 0.01001 0.2157 0.0173

MPS 0.1878 0.00546 0.3086 0.0138 0.0867 0.00553 0.2063 0.0138

II MLE 0.0984 0.00933 0.1139 0.0139 0.2542 0.01459 0.2392 0.0183

MPS 0.1903 0.00651 0.3044 0.0138 0.0756 0.00722 0.1968 0.0142

III MLE 0.0821 0.00819 0.0956 0.0129 0.2343 0.01270 0.2245 0.0169

MPS 0.1963 0.00611 0.3093 0.0133 0.0831 0.00655 0.1981 0.0135

60 50 I MLE 0.0364 0.00195 0.0459 0.0051 0.1192 0.00292 0.1201 0.0060

MPS 0.1413 0.00179 0.2398 0.0055 0.0712 0.00201 0.1719 0.0055

II MLE 0.0454 0.00230 0.0515 0.0051 0.1360 0.00355 0.1275 0.0061

MPS 0.1445 0.00201 0.2374 0.0054 0.0689 0.00233 0.1678 0.0055

III MLE 0.0395 0.00214 0.0429 0.0048 0.1288 0.00329 0.1205 0.0058

MPS 0.1471 0.00194 0.2402 0.0053 0.0724 0.00220 0.1691 0.0053

200 140 I MLE 0.0057 0.00022 0.0059 0.0006 0.0332 0.00027 0.0318 0.0007

MPS 0.0755 0.00023 0.1255 0.0007 0.0499 0.00025 0.1004 0.0007

II MLE 0.0102 0.00029 0.0082 0.0006 0.0415 0.00036 0.0343 0.0006

MPS 0.0824 0.00029 0.1224 0.0007 0.0534 0.00031 0.0969 0.0007

III MLE 0.0067 0.00026 0.0036 0.0006 0.0376 0.00032 0.0307 0.0006

MPS 0.0815 0.00027 0.1209 0.0006 0.0529 0.00028 0.0943 0.0006
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Table 3. The average length of the asymptotic and bootstrap intervals under different censoring schemes using α = 0.7, λ = 0.7.

T1 = X
[ 4m

5
]

T2 = X[m]+2

n n SC Estimation α λ α λ

Method LN LB LN LB LN LB LN LB

20 14 I MLE 0.26377 0.0046788 0.27552 0.0050550 0.30983 0.0039980 0.28618 0.0047686

MPS 0.20059 0.0035203 0.22250 0.0047315 0.23103 0.0045224 0.23131 0.0047671

II MLE 0.29919 0.0048243 0.27647 0.0049233 0.39537 0.0041244 0.30123 0.0046167

MPS 0.21640 0.0035219 0.22582 0.0042277 0.29313 0.0045363 0.25013 0.0043130

III MLE 0.28628 0.0047965 0.26962 0.0049139 0.34525 0.0040947 0.28101 0.0045851

MPS 0.21017 0.0034658 0.22213 0.0043048 0.24668 0.0044958 0.23194 0.0043546

40 30 I MLE 0.11678 0.0024650 0.13013 0.0027368 0.12633 0.0022748 0.13339 0.0026289

MPS 0.09956 0.0020873 0.11421 0.0023973 0.10707 0.0024633 0.11704 0.0023901

II MLE 0.12805 0.0025393 0.12833 0.0026539 0.14448 0.0023489 0.13440 0.0025324

MPS 0.10686 0.0021008 0.11398 0.0021336 0.12538 0.0024789 0.12115 0.0021428

III MLE 0.12407 0.0025231 0.12553 0.0026426 0.13588 0.0023304 0.12884 0.0025155

MPS 0.10415 0.0020697 0.11210 0.0021732 0.11319 0.0024486 0.11504 0.0021677

60 50 I MLE 0.06906 0.0015620 0.07876 0.0017265 0.07273 0.0014535 0.07995 0.0016588

MPS 0.06185 0.0013674 0.07205 0.0014647 0.06501 0.0015632 0.07315 0.0014609

II MLE 0.07284 0.0015981 0.07753 0.0016863 0.07808 0.0014918 0.07952 0.0016122

MPS 0.06470 0.0013746 0.07139 0.0013514 0.07149 0.0015714 0.07404 0.0013531

III MLE 0.07159 0.0015904 0.07648 0.0016792 0.07574 0.0014830 0.07768 0.0016038

MPS 0.06370 0.0013606 0.07060 0.0013681 0.06724 0.0015582 0.07172 0.0013646

200 140 I MLE 0.02414 0.0005696 0.02754 0.0006753 0.02458 0.0005471 0.02770 0.0006643

MPS 0.02296 0.0005296 0.02639 0.0005265 0.02337 0.0005745 0.02655 0.0005251

II MLE 0.02657 0.0006102 0.02609 0.0006299 0.02772 0.0005867 0.02673 0.0006176

MPS 0.02508 0.0005257 0.02517 0.0004428 0.02673 0.0005710 0.02597 0.0004437

III MLE 0.02572 0.0005994 0.02543 0.0006217 0.02626 0.0005754 0.02557 0.0006084

MPS 0.02435 0.0005229 0.02460 0.0004521 0.02485 0.0005696 0.02474 0.0004508

Table 4. The average length of the asymptotic and bootstrap intervals under different censoring schemes using α = 1.5, λ = 3.

T1 = X
[ 4m

5
]

T2 = X[m]+2

n m SC Estimation α λ α λ

Method LN LB LN LB LN LB LN LB

20 14 I MLE 0.67508 0.0463168 0.95338 0.0478844 0.82674 0.1038017 0.99174 0.0542365

MPS 0.46818 0.0187779 0.79471 0.0321290 0.55372 0.0329019 0.82296 0.0376888

II MLE 0.80490 0.0681241 0.96874 0.0500195 1.03658 0.2202268 1.01249 0.0579381

MPS 0.51939 0.0215482 0.81269 0.0327877 0.63352 0.0398694 0.84421 0.0390457

III MLE 0.74768 0.0579993 0.93554 0.0477004 0.94799 0.1770489 0.97559 0.0550062

MPS 0.49750 0.0203020 0.79494 0.0318790 0.60220 0.0375221 0.82530 0.0380913

40 30 I MLE 0.29074 0.0151283 0.45196 0.0223604 0.32217 0.0186226 0.46416 0.0235624

MPS 0.23554 0.0096344 0.40537 0.0180272 0.25813 0.0113842 0.41543 0.0188498

II MLE 0.32920 0.0185354 0.45297 0.0227821 0.37238 0.0232336 0.46608 0.0240758

MPS 0.25838 0.0109468 0.40846 0.0182726 0.28793 0.0130451 0.41909 0.0191281

III MLE 0.31172 0.0167960 0.43800 0.0218123 0.35085 0.0211704 0.45016 0.0231063

MPS 0.24836 0.0102919 0.39834 0.0177136 0.27579 0.0123148 0.40849 0.0185910

60 50 I MLE 0.17009 0.0082009 0.27359 0.0130897 0.18179 0.0090513 0.27805 0.0135821

MPS 0.14718 0.0061061 0.25418 0.0113569 0.15669 0.0066989 0.25815 0.0117709

II MLE 0.18302 0.0091069 0.27291 0.0131306 0.19715 0.0100858 0.27754 0.0136320

MPS 0.15633 0.0065913 0.25416 0.0113852 0.16759 0.0072627 0.25824 0.0118086

III MLE 0.17724 0.0086629 0.26685 0.0127704 0.19049 0.0096233 0.27127 0.0132760

MPS 0.15232 0.0063471 0.24958 0.0111351 0.16298 0.0070077 0.25352 0.0115662

200 140 I MLE 0.05907 0.0027093 0.09669 0.0043394 0.06043 0.0028018 0.09728 0.0043986

MPS 0.05530 0.0023604 0.09336 0.0040711 0.05655 0.0024393 0.09393 0.0041252

II MLE 0.06687 0.0031060 0.09389 0.0042311 0.06869 0.0032247 0.09448 0.0042900

MPS 0.06188 0.0026451 0.09087 0.0039693 0.06354 0.0027434 0.09144 0.0040238

III MLE 0.06325 0.0029204 0.09013 0.0040536 0.06489 0.0030323 0.09067 0.0041124

MPS 0.05895 0.0025161 0.08760 0.0038226 0.06045 0.0026106 0.08812 0.0038775
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6. Real Life Data

In this section, we consider a real life data to demonstrate
the proposed method and verify how our estimates work in
practice. The data for this application were utilized by Brito

[5]. The data cover the milk production of SINDI cows during
the period 1987 to 1997. The data set does not belong to
the interval (0,1), thus we transform the data using the the
following equation xi = yi−min(yi)

max(yi)−min(yi)
, for i = 1, ..., 107.

The transformed data is given in Table 5.

Figure 3. The histogram of the data set and its fitted density function to the milk production data.

Figure 4. Plot of the empirical quantile of Kumaraswamy distribution fitted to the milk production data.
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Table 5. Proportion of total milk production.

0.4365 0.4260 0.5140 0.6907 0.7471 0.2605 0.6196 0.3945 0.4553 0.3598 0.7629 0.3635

0.8781 0.4990 0.6058 0.6891 0.5770 0.5394 0.1479 0.4470 0.5285 0.5941 0.6174 0.4694

0.2356 0.6012 0.1525 0.5483 0.6927 0.7261 0.3323 0.5232 0.6465 0.6860 0.0609 0.3821

0.0671 0.2361 0.4800 0.5707 0.7131 0.5853 0.6768 0.0650 0.8492 0.6488 0.2747 0.0854

0.5350 0.4151 0.6789 0.4576 0.3259 0.2303 0.7687 0.8147 0.3627 0.5349 0.3751 0.4332

0.4371 0.3383 0.6114 0.3480 0.4564 0.7804 0.3406 0.3906 0.4438 0.1546 0.4517 0.3413

0.4823 0.5912 0.5744 0.5481 0.1131 0.7290 0.0168 0.4612 0.3188 0.2681 0.4049 0.6844

0.5529 0.4530 0.3891 0.4752 0.3134 0.3175 0.1167 0.2160 0.6707 0.5553 0.5878 0.4675

0.6750 0.5113 0.5447 0.4143 0.5627 0.5150 0.0776 0.6220 0.5629 0.4741 0.4111

The legitimacy of the Kumaraswamy model is checked
based on α = 3.436 and λ = 2.1949 using Kolmogrov-
Smirnov (K-S) test, as well as Anderson-Darling (A-D) and
chi-square tests. It is observed that K-S = 0.07625 with
pvalue = 0.5372, A-D = 1.003 and chi-square distance
= 5.0832 with a corresponding pvalue = 0.53318. This
indicates that the Kumaraswamy model provides a good fit to
the above data. In addition, Figure 3 gives the histogram of
the data-set and the plots of the fitted density. The QQ plot in
Figure 4 suggests that the Kumaraswamy distribution is very
suitable for the milk production data.

The following artificial Adaptive-IIHP censored data are
generated from this data using the same censoring schemes as

those described in Section 6, and they are listed below:
1. Scheme I : n = 107, m = 93, R = {14, 0∗92}.
2. Scheme II : n = 107, m = 93, R = {0∗92, 14}.
3. Scheme III : n = 107, m = 93, R = {7, 0∗91, 7}.
Table 6 displays the generated data. The calculated

MLE and MPS estimates, using Scheme I - Scheme III in
combination with T1 and T2, are listed in Table 7. Results for
T3 are similar.

We performed all calculations using SAS/IML. Based on
time T1, schemes I, II, and III each needed 14.85 seconds,
13.50 seconds, and 13.64 seconds, respectively, to converge.
While they took 16.38s, 16.69s, and 13.35s, respectively, to
converge when using T2.

Table 6. The meteorological study data.

Scheme Censored Data

I 0.0168, 0.0671, 0.0776, 0.0854, 0.1131, 0.1167, 0.1479, 0.1525, 0.1546, 0.2160, 0.2303, 0.2356, 0.2361, 0.2605, 0.2681, 0.2747, 0.3134, 0.3175, 0.3188,

0.3259, 0.3323, 0.3383, 0.3406, 0.3413, 0.348, 0.3598, 0.3627, 0.3635, 0.3751, 0.3821, 0.3891, 0.3906, 0.3945, 0.4049, 0.4111, 0.4143, 0.4151, 0.4260,

0.4332, 0.4365, 0.4371, 0.4438, 0.4470, 0.4517, 0.4530, 0.4553, 0.4564, 0.4576, 0.4612, 0.4675, 0.4694, 0.4741, 0.4752, 0.4800, 0.4823, 0.4990, 0.5113,

0.5140, 0.515 , 0.5232, 0.5285, 0.5349, 0.535, 0.5394, 0.5447, 0.5481, 0.5483, 0.5529, 0.5553, 0.5627, 0.5629, 0.5707, 0.5744,0.5770, 0.5853, 0.5878,

0.5912, 0.5941, 0.6012, 0.6058, 0.6114, 0.6174, 0.6196, 0.6220, 0.6465, 0.6488, 0.6707, 0.6750, 0.7471, 0.7804, 0.8147, 0.8492, 0.8781

II 0.0168, 0.0609, 0.0650, 0.0671, 0.0776, 0.0854, 0.1131, 0.1167, 0.1479, 0.1525, 0.1546, 0.216, 0.2303, 0.2356, 0.2361, 0.2605, 0.2681, 0.2747, 0.3134,

0.3175, 0.3188, 0.3259, 0.3323, 0.3383, 0.3406, 0.3413, 0.3480, 0.3598, 0.3627, 0.3635, 0.3751, 0.3821, 0.3891, 0.3906, 0.3945, 0.4049, 0.4111, 0.4143,

0.4151, 0.4260, 0.4332, 0.4365, 0.4371, 0.4438, 0.447, 0.4517, 0.4530, 0.4553, 0.4564, 0.4576, 0.4612, 0.4675, 0.4694, 0.4741, 0.4752, 0.4800, 0.4823,

0.4990, 0.5113, 0.5140, 0.5150 , 0.5232, 0.5285, 0.5349, 0.5350, 0.5394, 0.5447, 0.5481, 0.5483, 0.5529, 0.5553, 0.5627, 0.5629, 0.5707, 0.5744, 0.5770,

0.5853, 0.5878, 0.5912, 0.5941, 0.6012, 0.6058, 0.6114, 0.6174, 0.6196, 0.6220, 0.6465, 0.6488, 0.6707, 0.6750, 0.6768, 0.6789, 0.6844

III 0.0168, 0.0671, 0.0776, 0.0854, 0.1131, 0.1167, 0.1479, 0.1525, 0.1546, 0.2160, 0.2303, 0.2356, 0.2681, 0.2747, 0.3134, 0.3175, 0.3188, 0.3259, 0.3323,

0.3383, 0.3406, 0.3413, 0.3480, 0.3635, 0.3751, 0.3821, 0.3891, 0.3906, 0.3945, 0.4049, 0.4111, 0.4143, 0.4151, 0.4260, 0.4332, 0.4438, 0.4470, 0.4517,

0.4530, 0.4553, 0.4564, 0.4576, 0.4612, 0.4675, 0.4694, 0.4741, 0.4752, 0.4990, 0.5113, 0.5140, 0.5150 , 0.5232, 0.5285, 0.5349, 0.5350, 0.5394, 0.5447,

0.5481, 0.5483, 0.5529, 0.5553, 0.5627, 0.5629, 0.5707, 0.5744, 0.5770, 0.5853, 0.5878, 0.5912, 0.5941, 0.6012, 0.6058, 0.6114, 0.6174, 0.6196, 0.6220,

0.6465, 0.6488, 0.6707, 0.6750, 0.6768, 0.6789, 0.6844, 0.6860, 0.6891, 0.6907, 0.6927, 0.7131, 0.7261, 0.7290, 0.7471, 0.7629, 0.7687

Table 7. Parameter estimates for the milk production data.

scheme I scheme II scheme III

Time Method α λ α λ α λ

T1 MLE 3.4712 2.2533 2.6887 1.9786 3.7154 2.4062

MPS 3.0965 2.1063 2.3880 1.8480 3.3155 2.2580

T2 MLE 4.3852 2.3475 3.1446 2.1108 3.0561 2.2409

MPS 3.8433 2.1897 2.8856 2.0016 2.7934 2.1160
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Parametric bootstrap percentile method is used to compute
the bootstrap estimates (BootEst) and their corresponding
standard error (StdErr). A 95% confidence interval is
calculated and the average length of the confidence interval
is reported. The output of the parameter estimates along
with the bootstrap analysis are summarized in Tables 7 &
8. Results from these Tables reveal that the estimates based
on the the MLE and the MPS and based on Schemes I
& III, are the closest to those of the complete data set. It
is of great importance to notice through this analysis that
MPS-based estimates consistently outperform those based on
the MLE. Their standard errors are the lowest and their
confidence intervals are the shortest. This result confirms that
the MPS is more efficient than the MLE for estimating the
parameters of the Kumaraswamy distribution using Adaptive-
IIPH censored data.

7. Conclusions and Recommendations
In this article, the authors considered the Adaptive Type-

II Progressive Hybrid censoring data from the Kumaraswamy
distribution. This type of censoring satisfies the experiment
time limitation and can also be used to simulate different
practical situations.

Two types of inference procedures are considered; the
MLE and the MPS to estimate the unknown parameters of
the Kumaraswamy distribution. It is clear from the simulation
that Scheme I is superior to the other schemes as it provides
the smallest Bias and the smallest MSE values. It is
also observed that the estimates under the MPS outperforms
all MLE estimates. On the whole, the MPS estimates
are recommended for estimating the shape parameters of
the Kumaraswamy distribution based on Adaptive Type-II
Progressive Hybrid censoring and based on Scheme I.

Table 8. Parameter estimates, standard error and length of a 95confidence interval based on bootstrap resamples from the milk production data.

T 1= X 4×m
5

α λ

Scheme Method of estimation BootEst. estimates StdError L. B. CI. BootEst. estimates StdError L. B. CI.

I MLE 3.1755 0.7071 2.4531 2.2788 0.3007 1.0511

MPS 2.3422 0.5881 2.4215 2.3482 0.1103 0.4466

II MLE 3.3527 0.9642 3.9716 2.1014 0.3221 1.2756

MPS 3.1097 0.8963 3.0263 2.3737 0.2547 0.9409

III MLE 3.6052 0.9850 3.8260 2.3474 0.3696 1.4476

MPS 3.4052 0.9721 3.1838 2.7149 0.3532 1.1958

T 2= Xm+2 α λ

Scheme Method of estimation BootEst. estimates StdError L. B. CI. BootEst. estimates StdError L. B. CI.

I MLE 4.3005 1.3857 5.5748 2.4281 0.3812 1.5022

MPS 3.2202 0.7349 2.8830 2.1681 0.1633 0.7020

II MLE 5.6185 1.8901 7.5962 2.5649 0.4183 1.7022

MPS 3.4011 0.5839 1.8184 2.2692 0.0833 0.2951

III MLE 4.2498 1.2031 4.5900 2.5923 0.4062 1.6093

MPS 2.7224 0.5040 1.9385 2.3862 0.0619 0.2312
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