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Abstract: The design and development of optical systems relies on a thorough theoretical understanding of optical aberrations. 

However, determining the values of the various-order wavefront aberrations in an optical system is extremely challenging. 

Accordingly, the present study proposes a methodology for determining the numerical values of the secondary wavefront 

aberrations of an axis-symmetrical optical system by expanding the optical path length of its general ray using a Taylor series 

expansion. The determined values of the secondary wavefront aberration coefficients are given. They are distortion W511, field 

curvature W420, astigmatism W422, coma W331, oblique spherical aberration W240, spherical aberration W060, and six still 

un-named secondary wavefront aberrations. It is shown that three components (i.e., W244, W153, and W155) are not included 

among the secondary wavefront aberrations given in the literature despite satisfying the equations of axis-symmetrical nature of 

axis-symmetrical systems. In other words, the equation of existing literature fails to provide all the components needed to fully 

compute the secondary wavefront aberrations. By extension, some components of the higher-order wavefront aberrations may 

also be incompletely presented. The proposed method in this study provides the opportunity to compute all components of 

various-order wavefront aberrations for rotationally-symmetric optical systems, indicating it is a robust approach for aberration 

determination. 
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1. Introduction 

Aberrations fall into two main classes, namely ray aberration 

[1] and wavefront aberration [2-5]. Wavefront aberrations 

describe the wavefront deformation in terms of the Optical Path 

Length (OPL), as measured along a general ray from the 

reference sphere to the wavefront. For example, Figure 1 

illustrates the path of a general ray 0 0 0P
T

R  =  ℓ  

originating from an object 0P  with unit directional vector 0ℓ  

and propagating through an axis-symmetrical optical system 

with n boundaries. The figure additionally shows a reference 

sphere  refr  centered at /Pn Gaus  (i.e., the Gaussian image 

point of 0P ) and passing through the on-axis exit pupil point. 

As shown, the chief ray 0 0/P
T

chief
 
 ℓ  of 0P  is incident on 

the reference sphere at point /Pref chief . The wavefront 

aberration for the general ray 0R  is then determined as 

0 /( , , ) total total chiefW h V Vρ φ = − , where totalV  is the total OPL 

from 0P  to Pref , as measured along the general ray, and 

/total chiefV  is the OPL from 0P  to /Pref chief , as measured 

along the chief ray. The total wavefront aberration of an optical 

system can be calculated by raytracing. However, raytracing is 

of limited practical use in this regard since the orders of 

magnitudes of totalV  and /total chiefV  are perhaps several 

hundred millimeters, while the magnitude of the wavefront 

aberration 0( , , )W h ρ φ  is just a fraction of the wavelength. 

Thus, the accuracy of the raytracing results may be degraded 

due to rounding and truncating errors. Furthermore, it is 

impossible to decompose the values of 0( , , )W h ρ φ  obtained 

from raytracing into their constituent orders and components. 

Many approaches for exploring the aberrations of 

axis-symmetrical systems have been proposed [1–17]. One 
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such method (Eqs. (3.31a) and (3.31b) of [3]) exploits the 

axis-symmetrical natural of axis-symmetrical systems to 

express 0( , , )W h ρ φ  as: 

2 2
0 (2 )(2 ) 0

0 0 0

( , , ) ( ) ( ) ( ) ,j m p m m
j m p m m

j p m

W h C h Cρ φ ρ φ
∝ ∝ ∝

+ +
+ +

= = =

=∑∑∑  (1) 

where j, p and m are non-negative integers, ρ  and φ  are the 

polar coordinates of the entrance pupil (Figure 2), 0h  is the 

object height, and Cφ  denotes cosφ . From Eq. (1) the 

following wavefront aberrations are listed up to the sixth order 

in Tables on pages 157 and 158 of [3]: 

0 2 4 6 ,th nd th thW W W W W= ∆ + ∆ + ∆ + ∆       (2) 

where 0thW∆ , 2ndW∆ , 4thW∆  and 6thW∆  are the zeroth-, 

second-, fourth-, and sixth-order aberrations, respectively, and 

are given by 

0 000=thW C∆                                                (3) 

2 2
2 020 111 0 200 0=ndW C C h C C hρ ρ φ∆ + +                                        (4) 

4 3 2 2 2 2 2 3 4
4 040 131 0 222 0 220 0 311 0 400 0=thW C C h C C h C C h C h C C hρ ρ φ ρ φ ρ ρ φ∆ + + + + +                   (5) 

6 5 2 4 2 3 3 3 2 4 3 3
6 060 151 0 242 0 333 0 240 0 331 0

4 2 2 4 2 5 6
422 0 420 0 511 0 600 0

=

         

thW C C h C C h C C h C C h C h C

C h C C h C h C C h

ρ ρ φ ρ φ ρ φ ρ ρ φ

ρ φ ρ ρ φ

∆ + + + + +

+ + + +
               (6) 

It is noted that Eq. (1) can not only decompose the 

wavefront aberration into different orders, but can also 

decompose each order aberration into different components. 

For example, components 
4

040C ρ , 
3

131 0C h Cρ φ , 

2 2 2
222 0C h Cρ φ , 

2 2
220 0C h ρ , 

3
311 0C h Cρ φ  and 

4
400 0C h  in 

4thW∆  are the spherical, coma, astigmatism, field curvature, 

distortion and quartic piston aberrations, respectively. Notably, 

Eq. (1) can provide the components of the primary wavefront 

aberrations. However, as shown later in this study, 

components 
2 4 4

244 0C h Cρ φ , 
5 3

153 0C h Cρ φ , and 

5 5
155 0C h Cρ φ , which satisfy the equations derived from the 

axis-symmetrical property of axial-symmetric systems, are 

missing in 6thW∆ . In other words, Eq. (1) fails to provide all 

the components needed to fully compute the secondary 

aberrations. By extension, it is reasonable to assume that Eq. 

(1) may also fail to provide some components of the tertiary 

and higher-order wavefront aberrations. 

Although Eq. (1) can decompose the wavefront 

aberration into various orders and components, it cannot 

determine the values of the leading C coefficients. Many 

approaches for determining these coefficients have been 

proposed [1–17]. One of the most commonly used methods 

is that developed by Buchdahl [6], in which the marginal 

and principal paraxial rays are traced, and the results are 

then used to compute the unconverted third-order Buchdahl 

aberration coefficients (denoted as ,  1 5j jσ = − ). These 

sigma coefficients are then converted into transverse, 

longitudinal and wave aberration coefficients as required. 

Many commercial optical design and analysis programs use 

Buchdahl’s approach to determine the primary wavefront 

and ray aberrations (e.g., Zemax [18]). However, Zemax 

still fails to provide the numerical values of the secondary 

wavefront aberrations, since its formulae is relatively 

complicated. 

 

Figure 1. Reference sphere  refr  centered at Gaussian imaging point 

/n GausP . 

 

Figure 2. Entrance pupil with in-plane Cartesian coordinates ( , )a ax y  and 

polar coordinates ( , )ρ φ . 
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As noted in the beginning, the total wavefront aberration of 

an optical system can be calculated by tracing skew rays.  

However, skewray equations are recursive functions and are 

not convenient for many applications. The most elegant 

solution in mathematics for this type of hard problem is the 

Taylor series expansion to convert the functions into 

polynomial equations (e.g., [19, 20]). It is also shown that 

obtained polynomial ray equations can provide an effective 

means of determining an appropriate search during the system 

design process (e.g., [21]). Accordingly, the present study 

proposes a method for determining the values of the C 

coefficients for the secondary wavefront aberrations of an 

axis-symmetrical optical system based on the Taylor series 

expansion of the OPL of a skew ray. 

2. Taylor Series Expansion of Opl 

When analyzing an axis-symmetrical optical system 

containing n boundaries, the first step is to label the boundaries 

sequentially from i=0 to i=n (e.g., Figure 3 with the parameters 

listed in Table 1). As illustrated in Figure 4, in a medium of 

constant refractive index 1iξ − , the OPL between points 1Pi−  

and Pi  (denoted as iV ) of a general ray is given by the product 

of 1iξ −  and the geometric length  iλ  between them. That is, 

1  i i iV ξ λ−= .                         (7) 

As described in [17], iV  can be approximated by its Taylor 

series expansion up to the sixth-order as follows: 

0 /0 0/ /1 /2 /3 /4 /5 /6( ) ( )i i th axis i st i nd i rd i th i th i thV Y V Y V V V V V V≈ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆                      (8) 

where 0/axisY  is the ray originating from the on-axis point 

0/ 00 0
T

axis zP P=     with unit directional vector 

[ ]0/ 0 0 1
T

axis =ℓ , and is defined as (Eq. (7) of [17]): 

0/ 00 0 0 0
T

axis zY P=    .               (9) 

The zeroth-order term (i.e., /0 0/( )i th axisV Y  is a constant 

value for any ray originating from 0 0 0z0 h P
T

P =    . 

Furthermore, for axis-symmetrical systems, the first-, 

third-, and fifth-order expansions vanish as a consequence 

of the rotational symmetry of the system. Among the 

remaining expansions, the second-order expansion 

/2i ndV∆  provides the magnification and defocus 

coefficients, while the fourth-order expansion /4i thV∆  is 

responsible for the primary wavefront aberrations [17]. To 

investigate the secondary wavefront aberrations, one has 

to start from the following sixth-order expansion of iV  

(i=1 to i=n-1) with respect to the independent variables 

0h , ay  and ( 0ay h− ): 

6 6 6 6 6
6 5 5 4 2 4

/6 0 0 0 0 0 0 06 5 5 4 2 4
0 0 0 0 0 0 0

6 6 6
4 2 3 3
0 0 04 2 3 3 3 2

0 0 0 0

1
+6 +6 ( ) +15 30 ( )

720 ( ) ( )

+15 ( ) 20 60
( ) (

i i i i i
i th a a a a a

a a a a a

i i i
a a

a a a a

V V V V V
V h h x h y h h x h x y h

h h x h y h h x h x y h

V V V
h y h h x

h y h h x h x y

 ∂ ∂ ∂ ∂ ∂
∆ = − + − ∂ ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ ∂ −

∂ ∂ ∂
− + +

∂ ∂ − ∂ ∂ ∂ ∂ ∂ −

6
3 2 3 2
0 0 0 03 2

0 0 0

6 6 6 6
3 3 2 4 2 3 2 2 2
0 0 0 0 0 0 03 3 2 4 2 3 2 2 2

0 0 0 0 0 0 0

6

2
0 0

( ) 60 ( )
) ( )

20 ( ) +15 60 ( )+90 ( )
( ) ( ) ( )

+60
( )

i
a a a a

a a

i i i i
a a a a a a

a a a a a a

i

a a

V
h x y h h x y h

h h x y h

V V V V
h y h h x h x y h h x y h

h y h h x h x y h h x y h

V

h x y h

∂
− + −

∂ ∂ ∂ −

∂ ∂ ∂ ∂
+ − + − −

∂ ∂ − ∂ ∂ ∂ ∂ ∂ − ∂ ∂ ∂ −

∂
∂ ∂ ∂ −

6 6 6
2 3 2 4 5 4
0 0 0 0 0 0 03 2 4 5 4

0 0 0 0 0

6 6 6
3 2 2 3

0 0 0 0 03 2 2 3 4
0 0 0 0 0 0

( ) +15 ( ) +6 30 ( )
( ) ( )

+60 ( ) +60 ( ) 30 (
( ) ( ) ( )

i i i
a a a a a a

a a a a

i i i
a a a a a a

a a a a a a

V V V
h x y h h y h h x h x y h

h y h h x h x y h

V V V
h x y h h x y h h x y h

h x y h h x y h h x y h

∂ ∂ ∂
− − + −

∂ ∂ − ∂ ∂ ∂ ∂ ∂ −

∂ ∂ ∂
− − + −

∂ ∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ −
4

0

6 6 6 6
5 6 5 4 2

0 0 0 05 6 5 4 2
0 0 0 0

6 6 6 6
3 3 2 4 5

0 0 03 3 2 4 5
0 0 0

)

+6 ( ) +6 ( )+15 ( )
( ) ( ) ( )

20 ( ) +15 ( ) +6 ( )
( ) ( ) ( ) (

i i i i
a a a a a a

a a a a a a

i i i i
a a a a a a

a a a a a a

V V V V
h y h x x y h x y h

h y h x x y h x y h

V V V V
x y h x y h x y h

x y h x y h x y h y

∂ ∂ ∂ ∂
− + − −

∂ ∂ − ∂ ∂ ∂ − ∂ ∂ −

∂ ∂ ∂ ∂
+ − − − +

∂ ∂ − ∂ ∂ − ∂ ∂ − ∂
6

06
0

( ) .
)

a

a

y h
h


− − 

  (10) 

When determining wavefront aberrations, the leading coefficients of 00 ( )
ff g h g h

i a aV h x y h+ +∂ ∂ ∂ ∂ −  in Eq. (10) must be 

evaluated at the chosen ray 0/axisY . After combining the expanded terms of Eq. (10), the following expression is obtained for 

i/6thV∆  in terms of 0h , ax  and ay : 
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6 5 5 4 2 4 4 2 3 3 3 2
i/6th /600 0 /510 0 /501 0 /420 0 /411 0 /402 0 /330 0 /321 0

3 2 3 3 2 4 2 3 2 2 2 2 3
/312 0 /303 0 /240 0 /231 0 /222 0 /213 0 /

V = + + + +

+ + + +

∆ + + +

+ + +
i i a i a i a i a a i a i a i a a

i a a i a i a i a a i a a i a a i

g h g h x g h y g h x g h x y g h y g h x g h x y

g h x y g h y g h x g h x y g h x y g h x y g 2 4 5
204 0 /150 0

4 3 2 2 3 4 5 6 5 4 2
/141 0 /132 0 /123 0 /114 0 /105 0 /060 /051 /042

3 3 2 4 5 6
/033 /024 /015 /006

+ + + + +

+ + ,

+

+ + +

+ +

a i a

i a a i a a i a a i a a i a i a i a a i a a

i a a i a a i a a i a

h y g h x

g h x y g h x y g h x y g h x y g h y g x g x y g x y

g x y g x y g x y g y

 (11) 

The first, second and third post-subscripts of the g coefficients in Eq. (11) refer to the powers of 0h , ax  and ay , respectively. 

The present study uses numerically-determined derivatives (i.e., 00 ( )
ff g h g h

i a aV h x y h+ +∂ ∂ ∂ ∂ − ) to compute the g coefficients. It 

is found that the following g coefficients are all equal to zero: 

/510 /411 /330 /312 /231 /213 /150 /132 /114 /033 /015 /051 0.i i i i i i i i i i i ig g g g g g g g g g g g= = = = = = = = = = = =  

Thus, the sixth-order expansion of iV  (i=1 to i=n-1) in Eq. (11) can be simplified as 

6 5 4 2 4 2 3 2 3 3 2 4 2 2 2
i/6th /600 0 /501 0 /420 0 /402 0 /321 0 /303 0 /240 0 /222 0

2 4 4 2 3 5 4 2 2 4
/204 0 /141 0 /123 0 /105 0 /042 /024 /060

V = + + + + + + +

+ + + + + + +

∆ i i a i a i a i a a i a i a i a a

i a i a a i a a i a i a a i a a i

g h g h y g h x g h y g h x y g h y g h x g h x y

g h y g h x y g h x y g h y g x y g x y g x6 6
/006+ ,a i ag y

 (12) 

where the expressions of the g coefficients are listed in 

Appendix. The values of g coefficients can be determined by 

coding these equations using the FORTRAN program. The 

term /600ig  is referred to as the piston term since this term do 

not involve ax  or ay . Furthermore, since all the g coefficients 

are evaluated at 0/axisY  (i.e., a ray travelling along the optica 

axis), and Eqs. (38) and (39) of Appendix do not involve partial 

derivatives with respect to 0h∂ , it follows that the numerical 

values of /042ig  and /024ig  are equal. That is, 

/042 /024i ig g=                     (13) 

Similarly, the numerical values of /060ig  and /006ig  are 

also equal, i.e., 

/060 /006i ig g=                     (14) 

 

Figure 3. Petzval lens system with n=12 boundaries. 

Table 1. Specification of illustrative axis-symmetrical system shown in Figure 3. 

Boundary i radius separation refractive index 

0 (object)  222.103275 1.00000 

1 (entrance pupil) 0 -22.103275 1.00000 

2 38.22190 15.84960 1.65000 
3 -56.08570 5.96900 1.71736 

4 -590.68200 3.02260 1.00000 

5 (aperture) 0 14.02080 1.00000 

Boundary i radius separation refractive index 

6 -41.79570 2.514600 1.52583 

7 29.34460 7.924800 1.00000 

8 63.56350 6.09600 1.65000 
9 -56.86550 -39.110352 1.00000 

10 (exit pupil) 0 0 1.00000 

11 (reference sphere) refR  131.198822 1.00000 

12 (image surface) 0   

 

Figure 4. Optical path length Vi  is given by product of geometric length 

 iλ  between points 1Pi−  and Pi  and refractive index 1iξ −  of 

intermediate medium. 

3. Expressions of C Coefficients 

Let totalV  denote the OPL measured along the general ray 

0 0 0

T
R P =  ℓ  from object 0P  to the incidence point on 

the reference sphere Pref . totalV  can be determined by 

summing all the OPLs from object 0P  to Pref , i.e., 

1

1 2 i 2 1

1

... ...

n

total n n i

i

V V V V V V V

−

− −
=

= + + + + + + =∑ .  (15) 

From Eqs. (8) and (15), the sixth-order Taylor series 

expansion of totalV , denoted as /6total thV∆ , can be obtained 

simply as 
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1

/6 /6

1

n

total th i th

i

V V

−

=

∆ = ∆∑ ,               (16) 

where /6i thV∆  (i=1 to i=n-1) is given already in Eq. (12). 

As noted previously, Figure 1 shows the chief ray of object 

0P  and its incidence point /ref chiefP  on the reference sphere. 

The chief ray is in fact a particular ray originating from 0P  

and passing through the center of aperture of the system (i.e., 

( , ) (0,0)a ax y = ). Thus, the sixth-order Taylor series 

expansion of the OPL of the chief ray, denoted as 

/ /6total chief thV∆ , can be determined from Eq. (12) by setting 

( , ) (0,0)a ax y = , to give 

1
6

/ /6 /600 0

1

n

total chief th i

i

V g h

−

=

∆ =∑ .           (17) 

The difference between Eqs. (16) and (17) (i.e., 

/6 / /6total th total chief thV V− ∆ ) then gives the secondary wavefront 

aberration 6thW∆  of the general ray 0R  as 

1
5 4 2 4 2 2 3 2 3 3

6 /501 0 /420 /402 0 /402 0 /321 0 /303 0

1

2 4 2 2 2 2 2 2 2 2 3
/240 /204 0 /222 /204 0 /204 0 /123 0

4
/141 0

( ) + ( )+ +

    +( ) +( 2 ) + ( ) +

    +

n

th i a i i a i a a i a a i a

i

i i a i i a a i a a i a a

i a a

W g h y g g h x g h x y g h x y g h y

g g h x g g h x y g h x y g h x y

g h x y

−

=

∆ = + − +

− − +

∑

5 6 4 2
/105 0 /060 /006 /042 /024 /006

2 2 3 2 4 2 2 2 2
/006 /006 /024

1
5 4 2 4 2 2 3 3

/501 0 /420 0 /402 /420 0 /321 0 /303

1

+ +( ) +( 3 )

    + ( ) 3 ( )

= + +( ) + +(

i a i i a i i i a a

i a a i a a i a a a a

n

i i i i i i

i

g h y g g x g g g x y

g x y g x y g x y x y

g h C g h g g h C g h C gρ φ ρ ρ φ ρ φ
−

=

− − −

+ − + + 

 −∑
3 3 3

/321 0

2 4 2 4 2 2 4 4
/240 0 /222 /240 0 /204 /222 /240 0

5 5 3 5 5
/141 0 /123 /141 0 /141 /123 /105 0

6 6 2
/060 /042 /060 /0

)

    + +( 2 ) +( )

    + +( 2 ) +( + )

    +( 3 ) +(

i

i i i i i i

i i i i i i

i i i i

g h C

g h g g h C g g g h C

g h C g g h C g g g h C

g g g C g

ρ φ

ρ ρ φ ρ φ

ρ φ ρ φ ρ φ

ρ ρ φ

−

− − +

− −

+ − 6 4
24 /042 /060

6 6
/006 /060 /042 /024

5 4 2 4 2 2 3 3 3 3 3
511 0 420 0 422 0 331 0 333 0

2 4 2 4 2 2 4 4 5 5 3
240 0 242 0 244 0 151 0 153 0

155 0

2 3 )

    +( )

+ + +

     + + + + +

    +

i i

i i i i

g g C

g g g g C

C h C C h C h C C h C C h C

C h C h C C h C C h C C h C

C h

ρ φ

ρ φ

ρ φ ρ ρ φ ρ φ ρ φ

ρ ρ φ ρ φ ρ φ ρ φ

ρ

− +

− + − 

= +

5 5 6 6 2 6 4 6 6
060 062 064 066+ + + +  .C C C C C C C Cφ ρ ρ φ ρ φ ρ φ

      (18) 

One has to note that both ( , ) ( , )a ax y S Cρ φ ρ φ=  and 

2 21S Cφ φ= −  are used in Eq. (18). It is also noted that the 

first, second and third post-subscripts of the C coefficients in 

Eq. (18) represent the powers of 0h , ρ  and Cφ , 

respectively. The sum of the first two post-subscripts of 511C , 

for example, indicates that 511C  is one C coefficient of the 

sixth-order expansion. The C coefficients of Eq. (18) are 

defined as follows: 

1

511 /501

1

n

i

i

C g

−

=

=∑ , 

1

420 /420

1

n

i

i

C g

−

=

=∑ , 

1

422 /402 /420

1

( )

n

i i

i

C g g

−

=

= −∑ , 

1

331 /321

1

n

i

i

C g

−

=

=∑ , 

1

240 /240

1

n

i

i

C g

−

=

=∑ , 

1

060 /060

1

n

i

i

C g

−

=

=∑ , 

1

151 /141

1

n

i

i

C g

−

=

=∑ , 

1

242 /222 /240

1

( 2 )

n

i i

i

C g g

−

=

= −∑ , 

1

333 /303 /321

1

( )

n

i i

i

C g g

−

=

= −∑ , 

1

244 /204 /222 /240

1

( )

n

i i i

i

C g g g

−

=

= − +∑ , 

1

153 /123 /141

1

( 2 )

n

i i

i

C g g

−

=

= −∑ , 

1

155 /141 /123 /105

1

( + )

n

i i i

i

C g g g

−

=

= −∑ , 

1

062 /042 /060

1

( 3 )

n

i i

i

C g g

−

=

= −∑ , 

1

064 /024 /042 /060 062

1

( 2 3 )

n

i i i

i

C g g g C

−

=

= − + = −∑ , 

1

066 /006 /060 /042 /024

1

( ) 0

n

i i i i

i

C g g g g

−

=

= − + − =∑ .          (19) 
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Equations (13) and (14) are used to simplify 064C  and 

066C  of Eq. (19). 

4. Secondary Wavefront Aberrations 

Equation (19) enable the determination of the C coefficients 

for a general ray. In the discussions which follow, the object in 

Figure 3 is assumed to be positioned at 0 200zP = − , the 

image plane is the Gaussian image plane (i.e., the separation 

distance of the image plane i=12 from surface i=9 is 

92.088474 ), where all lengths have units of mm). In addition, 

the radius of the entrance pupil is max 21ρ = . The 

methodology proposed in this study was implemented in 

self-written FORTRAN code. From Eq. (19), the values of the 

C coefficients are obtained as: 

10
511C = 0.03430 10−× , 

10
420C =0.03720 10−× , 

10
422C = 0.00353 10−× , 

10
331C = 0.23403 10−− × , 

10
240C =0.26685 10−× , 

10
060 0.10079 10C −= − × , 

10
151C = 0.62709 10−− × , 

10
242C = 0.62732 10−× , 

10
333C = 0.15466 10−− × , 

10
244C = 0.01924 10−× , 

10
153C = 0.12480 10−× , 

10
155C = 0.00693 10−− × , 062 064C +C =0 , 066C =0 . 

It is noted that different researchers may use different 

terminologies to describe wavefront aberrations. For example, 

it is possible to utilize 060C , 331C , 422C , 420C  and 511C  to 

refer to secondary spherical aberration, coma, astigmatism, 

field curvature and distortion, respectively. The present study 

follows the notation conventions of Zemax [18] and Johanson 

[4] by using the aberrations of the ray passing through point 

aQ  on the entrance pupil (i.e., the maximum entrance pupil 

radius maxρ ρ=  with 1Cφ = , see Figure 2) to represent the 

secondary wavefront aberrations. The aberrations for any ray 

with other values of ρ  and φ  can be determined simply 

using appropriate scaling factors (i.e., maxρ ρ  and Cφ ). 

The wavefront aberrations are often divided by the 

wavelength 0 0.00055υ = . In other words, the secondary 

aberrations can be described as 

0 max 0 0 max 0( ) ( ) ( 0 ) / ( ) ( ) /j p o m j p
jpm jpmWjpm C h C C hρ υ ρ υ= = .  (20) 

The aberration 
5 3

153 0C h Cρ φ  of the ray passing ( , )ρ φ , for 

example, can be determined from 153W  by 
5 3

max 0153( ) ( )W Cρ ρ φ υ . Based on the C coefficients given 

above and Eq. (20), the distortion W511, field curvature W420, 

astigmatism W422, coma W331, oblique spherical aberration 

W240, and spherical aberration W060 can be computed from 

the proposed method as 

5
511 0 max 0511 / = 0.185925W C h ρ υ= , 

4  2
420 0 max 0420 / =0.249131W C h ρ υ= , 

4   2
422 0 max 0422 / = 0.023644W C h ρ υ= , 

3   3
331 0 max 0331 / 1.936011W C h ρ υ= = − , 

2  2
240 0 max 0240 / 2.726958W C h ρ υ= = , 

  6
060 max 0060 / 1.571733W C ρ υ= = − .   (21) 

The following are six still un-named secondary aberrations when 062 064 0W W+ =  and
 6

066 max 0066 / =0W C ρ υ=  are ignored: 

 5
151 0 max 0151 / = 7.916136W C h ρ υ= − , 

2  4
242 0 max 0242 / =6.410636W C h ρ υ= , 

3  3
333 0 max 0333 / 1.279410W C h ρ υ= = − , 

2  4
244 0 max 0244 / =0.196324W C h ρ υ= , 

  5
153 0 max 0153 / = 1.575386W C h ρ υ= , 

  5
155 0 max 0155 / = 0.087512W C h ρ υ= − .   (22) 

As stated in the Introduction, Zemax does not provide the 

values of the secondary wavefront aberrations. Therefore, it is 

necessary to use the fifth-order derivatives of the OPL to validate 

the proposed methodology. From Table 2, it is seen that the 

numerical results obtained from the two methods are in good 

agreement. Furthermore, the value of the total wavefront 

aberration determined from raytracing, i.e., 

0 0( , , ) 131.895732W h ρ φ υ= − , is also in reasonable agreement 

with the sum of the primary and secondary wavefront aberrations 

(i.e., 
4 6 0 0 0133.281438 1.422798 134.704236th thW W υ υ υ∆ + ∆ = − − = − ) 

from the proposed method. The difference between them 

( 02.808498υ− ) is attributed to higher-order aberrations. 

As also stated in the Introduction, it is impossible to have 

components 
2 4 4

244 0C h Cρ φ , 
5 3

153 0C h Cρ φ , and 

5 5
155 0C h Cρ φ  from Eq. (1) when j, p and m are confined to 

non-negative integers. Equation (1) derives from the fact that 

the aberration function 0( , , )W h ρ φ  must satisfy the 

following equations based on the axis-symmetrical nature of 

axis-symmetrical systems (P. 154 of [2]): 

(0, , ) (0, , )W Wρ φ ρ φ= −               (23) 

0 0( , , ) ( , , )W h W hρ φ ρ φ= −              (24) 

0 0 0( , , ) ( , , ) ( , , )W h W h W hρ φ ρ π φ ρ π φ= − + = − −   (25) 

Equation (23) implies that the components of 0( , , )W h ρ φ
that do not depend on 0h  should vary as 

2ρ , or as its integer 

power. Meanwhile, Eq. (24) indicates that 0( , , )W h ρ φ  must 

be a function of Cφ . Finally, Eq. (25) shows that 0( , , )W h ρ φ  

corresponding to an object with height 0h  above the optical 
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axis must equal 0( , , )W h ρ π φ− + , and 0( , , )W h ρ π φ− −  for 

an object with a height 0h  below the optical axis. It should be 

noted that the missing components (i.e., 
2 4 4

244 0C h Cρ φ , 

5 3
153 0C h Cρ φ , and 

5 5
155 0C h Cρ φ ) satisfy Eqs. (23)-(25). 

Consequently, Eq. (1) is only a sufficient condition, not a 

necessary and sufficient condition, for the axis-symmetrical 

nature of axis-symmetrical systems. If j, p and m of Eq. (1) are 

not confined to non-negative integer values, the missing 

components 
2 4 4

244 0C h Cρ φ , 
5 3

153 0C h Cρ φ , and 

5 5
155 0C h Cρ φ  can be obtained from (j,p,m)= (-1,0,4), (-1,1,3), 

and (-2,0,5), respectively. 

Table 2. Numerical values of secondary wavefront Wjpm  coefficients 

obtained using fifth-order derivatives of OPL. Their percentage errors 

compared with the proposed method are less than 0.001%. 

W511= 0.185926 W420= 0.249130 W422= 0.023640 

W331= -1.936007 W240= 2.726957 W060= -1.571733 

W151= -7.916133 W242= 6.410633 W333= -1.279406 

W244= 0.196322 W153= -1.575385 W155= -0.087511 

5. Conclusions 

The wavefront aberration of an optical system is defined as 

the optical path difference between a general ray totalV  and 

the chief ray /total chiefV  measured from the object to the 

reference sphere. It is impossible to decompose 0( , , )W h ρ φ  

into its various-order aberrations and components by 

raytracing. Accordingly, this study has proposed a method for 

decomposing the secondary wavefront aberrations of an 

axis-symmetrical optical system by expanding the OPL of the 

general ray as a Taylor series expansion. The sixth-order 

wavefront aberrations 6thW∆  of the system have then been 

obtained by computing the OPL difference 

/6 / /6total th total chief thV V− . Notably, the proposed method uses 

numerically-determined derivatives to generate the 

information needed to compute the wavefront aberration 

coefficients, and thus the equations based on the 

axis-symmetrical nature of axis-symmetrical systems are not 

required. It has been shown that the wavefront aberration 

function provided in the literature (e.g., [3] ) is a sufficient 

condition only, not a necessary and sufficient condition, for 

the axis-symmetrical nature of axis-symmetrical systems. 

Consequently, three components of the secondary wavefront 

aberrations are missing. As a result, some components of the 

higher-order aberrations may also be incompletely presented. 

By contrast, the method proposed in this study provides the 

opportunity to compute the higher-order aberration 

coefficients simply by generating higher-order partial 

derivative matrices. It is anticipated that the proposed method 

can thus provide a more accurate evaluation of the system 

aberrations in rotationally-symmetric optical systems. 
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Appendix 

6 6 6 6 6 6 6

/600 6 6 5 5 4 2 2 4 3 3
0 0 0 0 0 0 0 0 0 0 0 0

1
( 6 6 +15 +15 20 )

720 ( ) ( ) ( ) ( ) ( ) ( )

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + − − −

∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ −
i i i i i i i

i

a a a a a a

V V V V V V V
g

h y h h y h h y h h y h h y h h y h
 (26) 

6 6 6 6 6 6

/501 6 5 5 4 2 2 4 3 3
0 0 0 0 0 0 0 0 0 0 0

1
( + 5 5 10 10 )

120 ( ) ( ) ( ) ( ) ( ) ( )

∂ ∂ ∂ ∂ ∂ ∂
= − + − − +

∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ −
i i i i i i

i

a a a a a a

V V V V V V
g

y h h y h h y h h y h h y h h y h
(27) 

6 6 6 6 6

/420 4 2 2 4 3 2 2 3 2 2 2
0 0 0 0 0 0 0 0

1
( + 4 4 +6 )

48 ( ) ( ) ( ) ( )

i i i i i
i

a a a a a a a a a

V V V V V
g

h x x y h h x y h h x y h h x y h

∂ ∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ −
      (28) 

6 6 6 6 6

/402 6 5 4 2 2 4 3 3
0 0 0 0 0 0 0 0 0

1
( 4 + 6 4 )

48 ( ) ( ) ( ) ( ) ( )

i i i i i
i

a a a a a

V V V V V
g

y h h y h h y h h y h h y h

∂ ∂ ∂ ∂ ∂
= − + −

∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ −
        (29) 

6 6 6 6

/321 2 4 3 2 2 3 2 2 2
0 0 0 0 0 0 0

1
( +3 3 )

12 ( ) ( ) ( ) ( )

i i i i
i

a a a a a a a a

V V V V
g

x y h h x y h h x y h h x y h

∂ ∂ ∂ ∂
= − + −

∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ −
          (30) 

6 6 6 6

/303 6 5 2 4 3 3
0 0 0 0 0 0 0

1
+3 3

36 ( ) ( ) ( ) ( )

 ∂ ∂ ∂ ∂
= − − +  ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ − 

i i i i
i

a a a a

V V V V
g

y h h y h h y h h y h
               (31) 
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6 6 6

/240 2 4 4 2 4
0 0 0 0

1
( + 2 )

48 ( ) ( )

i i i
i

a a a a a

V V V
g

h x x y h h x y h

∂ ∂ ∂
= −

∂ ∂ ∂ ∂ − ∂ ∂ ∂ −
                        (32) 

6 6 6

/222 2 4 2 3 2 2 2
0 0 0 0 0

1
( 2 + )

8 ( ) ( ) ( )

i i i
i

a a a a a a

V V V
g

x y h h x y h h x y h

∂ ∂ ∂
= −

∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ −
                   (33) 

6 6 6

/204 6 5 2 4
0 0 0 0 0

1
( 2 + )

48 ( ) ( ) ( )

i i i
i

a a a

V V V
g

y h h y h h y h

∂ ∂ ∂
= −

∂ − ∂ ∂ − ∂ ∂ −
                       (34) 

6 6

/141 4 2 4
0 0 0

1
( )

24 ( ) ( )

i i
i

a a a a

V V
g

x y h h x y h

∂ ∂
= − +

∂ ∂ − ∂ ∂ ∂ −
                             (35) 

6 6

/123 2 4 2 3
0 0 0

1
( + )

12 ( ) ( )

i i
i

a a a a

V V
g

x y h h x y h

∂ ∂
= −

∂ ∂ − ∂ ∂ ∂ −
                            (36) 

6 6

/105 6 5
0 0 0

1
( + )

120 ( ) ( )

i i
i

a a

V V
g

y h h y h

∂ ∂
= −

∂ − ∂ ∂ −
                               (37) 

6

/042 4 2
0

1
( )

48 ( )

i
i

a a

V
g

x y h

∂
=

∂ ∂ −
                                      (38) 

6

/024 2 4
0

1
( )

48 ( )

i
i

a a

V
g

x y h

∂
=

∂ ∂ −
                                               (39) 

6

/060 6

1
( )

720

i
i

a

V
g

x

∂
=

∂
                                           (40) 

6

/006 6
0

1
( )

720 ( )

i
i

a

V
g

y h

∂
=

∂ −
                                        (41) 
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