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Abstract: In this paper we define the multifractional Brownian motion and we give some properties. we study the uniform
Convergence of the Serie expansion. After having determined the covariance function, we give in proposition 2 another proof of
almost sure uniform convergence on compact K of the series. We will finish by showing that the m.B.f is locally astymptotically
self-similar, with field or fractional Brownian field with Hurst exposant H. One of the problem, for application of multifractional
Brownian motion, is the regularity of the function . In the filtered white noise model the increments are no more homogeneous
as in fractional Brownian field case. It is obvious when we consider the tangent field associated with a function. Still the
multifractional function in the previous model is constant and it is not convient for many applications. We show the uniform
convergence of the series on K. We deduce from the previous questions the almost sure uniform convergence of the series to a
mBm.
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1. Introduction

The multifractional Brownian motion (mBf) are Gaussian
processes which exhibit local-similary. They have been
introduced in the seminal papers of R.F Peltier and Levy-
Vehel, Benassi and as extensions to theclass of fractional
Brownian motion(fBm) processes [14].

This natural extension of fBm results in some sense in a loss
of properties the increments of mBm indeed are non stationary
and the process is no more self-similar.

One generalize the definition of the fractional Brownian
motion of exponent H to the case where H is no longer a
constant, but a function of the time index of the processes.

The new process does provide a useful model for host of
continuous and non stationary natural signals. It is wells Know
that fBm’s are self-similar processes allowing to conveniently
describe irregular signals which arise in many situations [7],
[4] and [12].

However, the pointwise irregularity of an fBm is the same
all along its path.

This last property is sometimes undesirable, since it restricts
the fields of application. For instance, fBm have frequently

been used for synthesizing artificial mountains.
Such a modeling assumes that the irregularity of a mountain

is everywhere the same. It appears that in reality this
assumption is too strong because in particular, one does not
take into account erosion phenonena.

Consequently, it should be convenient to relax the contraint
of stationarity and be instead able to control the local
irregularity.

The mBm seems to be the simplest generalisation of fBm
that fulfills this requirement.

Let us gives two examples. The long term correlation of
the increments of fBm decay as K2H−2, resulting in long
range dependence when H > 1

2 and anti-persistent behavior
when H < 1

2 . Also, almost surly, for eacht its pointwise
Hölder exponent is equal to H. Since H rules both ends of
the Fourier spectrum, i.e the high frequencies related to the
Hölder regularity and the low frequencies related to the long
term dependence structure, it is not possible to have at the same
time a very irregular local behavior and long range dependence
(implying H > 1

2 ).
As a consequence, fBm is not adapted to model phenomena

which display both there features, such as Internet traffic or
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certain highly textured images with strong global organisation.
Another example is in the field of image synthesis: fBm has
frequently been used for generating artificial mountains. Such
a modeling assumes that the regularity of the mountain is
everywhere the same. This is not realistic, since it does not
take into account erosion or other meteorological phenomena
which smooth some parts of mountains more than others.

Multifractional Brownian motion was introduced to
overcome there limitations. The basic idea is to replace the
real H by a function h(t).

2. Preliminaries

Definition 2.1. Let (X, dX), (Y, dY ) be two metric spaces.
A function f : X 7→ Y is called a Hölder function of
exponent β > 0, if for each x, y ∈ X such that dX(x, y) < 1
we have

dY (f(x), f(y)) ≤ CdX(x, y)β . (1)

Definition 2.2. Let H : [0,+∞) 7→ (0, 1) be a Hölder
function of exponent β > 0. For t ≥ 0 the following random
function, denoted by WH(t) or WH(t) is called reduced
multifractional Brownian motion with functional parameter H:

WHt =
1

Γ(Ht + 1
2 )

{∫ 0

−∞

[
(t− s)Ht− 1

2 − (−s)Ht− 1
2

]
dW (s) +

∫ t

0

(t− s)Ht− 1
2 dW (s)

}
where W denotes the ordinary Brownian motion and the
integration is taken in the mean square sense.

The multifractional Brownian motion processes (MBM) are
obtained by allowing the self-similarity parameter H of to
depend on time.

This can be done by using various representations of the
FBM processes.

R.F Peltier and Levy-Vehel [14] have introduced the MBM
process

Y(0,1)(t) =

∫
R

(
(t− u)

H(t)− 1
2

t − (−u)
H(t)− 1

2
t W (du)

)
(2)

where

xδt = xδ, x > 0 and xδt = 0, x 6 0.

Here the function H(t) takes values in the range (0, 1) and
W(du) denotes an independently scattered standard Gaussian
measure on R.

The above integral is well-defined in the L2-sense since
0 < H(t) < 1 and it can be viewed as an integral moving
average type representation of the process Y0,1.[7] and [11]

On the other hand, Ỹ =
{
Ỹ (t)

}
t∈R

based on

a harmonizable integral representation of the fractional
Brownian motion. Namely

Ỹ (t) =

∫
R

(
eitξ − 1

|ξ|H(t)+ 1
2

)
W̃ (dξ) where H(t) ∈ (0, 1) (3)

and where W̃ (dξ) denotes a complex-valued Gaussian
measure.

Observe that when H(t)= H = const both Y(0,1) and Ỹ
become fractional Brownian motion processes with self-
similarity parameter H. When H(t) is non constant but
regular, then we expect that continuity, the finite-dimensional
distribution of the MBM processes Y(0,1)(t) and Ỹ (t) to be
close to those of a FBM process BH(t0)(t), in a neighborhood
of t0 ∈ R.

Indeed, Benassi and al have [1] shown, under some
regularity conditions on the function H(t), that Ỹ (t) is locally
asymptotically self-similar and that its tangent process is the

FBM process. For results about Y(0,1) see for example, R.F
Peltier and Levy-Vehel [14] and also Stoev, Taqqu and Al
[5] for results about Gaussian and stable infinite variance
processes.

R.F Peltier, Levy-Vehel and Benassi [14] have also shown
that, under regularity conditions on the functions H(t), the
paths of Y(0,1) and Ỹ have pointwise Holder exponent at t,
equal almost surely to H(t).

The processe Y(0,1) and Ỹ share many properties and it is
important to establish their precise connection [8].

Serge Cohen [15] has shown the process Ỹ has the following
time domain integral representation:{

Ỹ (t)
}
t∈R

={
KH(t)

∫
R

(
|t− u|H(t)− 1

2 − 1− | − u|H(t)− 1
2

)
W (du)

} (4)

whereKH(t) is a determinisyic function and where the Kernel
is

ln

(
1

|t− u|

)
− ln

(
1

| − u|

)
u 6= 0 u 6= t if H(t) =

1

2
.

Observe that the stochastic integrals in relations (2) and (4)
involve different Kernel functions.

Here, we study the correlation structures of the MBM
processes Y(0,1) and Ỹ , extending results of Serge Cohen and
Ayache [14].

In fact Stillian and Taqqu [5] shown that the MBM processes
Y(0,1) and Ỹ have generally different correlation structures,
when the function H(t) is non constant.

Definition 2.3. Let h : Rd → (0, 1) be a measuarable
function. A real valued field is called a multifractional
Brownian field with multifractional function h, if it admits the
harmonisable representation

Bh(t) =
1

(C (h(x)))
1
2

∫
Rd

e−ixξ − 1

‖ξ‖ d
2 +h(x)

W̃ (dξ) (5)

where the normalization function is

C(s) =

∫
Rd

2(1− cos(ξ1))

‖ξ‖d+2s

dξ

(2π)
d
2

=
π

1
2 Γ(s+ 1

2
)

2
d
2 Γ(2s) sin(πs)Γ(s+ d

2
)
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where ξ1 is the first coordinate of the d-dimensional vector ξ. If d = 1 multifractional Brownian fields (mBf) are often
called multifractional Brownian motion

3. Some Fondamental Results

Proposition 3.1. Let Bh be an mBm with multifractional function h.
then

E (Bh(x)Bh(y)) = D (h(x), h(y))
(
‖x‖h(x)+h(y) + ‖y‖h(x)+h(y) − ‖x− y‖h(x)+h(y)

)
(6)

where

D (s, t) =

√
Γ (2s+ 1) Γ (2t+ 1) sin (πs) sin (πt)Γ

(
s+t+1

2

)
2Γ (s+ t+ 1) sin

(
π(s+t)

2

)
Γ
(
s+t+d

2

) s, t ∈ (0, 1)

Proof.

E (Bh(x)Bh(y)) = E

(
1

C (h(x))
1
2

∫
Rd

e−ixξ − 1

‖ξ‖ d
2 +h(x)

W̃ (dξ)
1

C (h(y))
1
2

∫
Rd

eiyξ − 1

‖ξ‖ d
2 +h(y)

W̃ (dξ)

)

=
1

C (h(x))
1
2 C (h(y))

1
2

∫
Rd

(
e−ixξ − 1

) (
eiyξ − 1

)
‖ξ‖h(x)+h(y)+d

dξ

(2π)
d
2

Fix x, y ∈ Rd, and let BH be a standard fractional Brownian field with fractional parameter H = h(x)+h(y)
2 because of the

harmonizable representation of fractional Brownian field we know

E (Bh(x)Bh(y)) =
1

CH

∫
Rd

(
e−ixξ − 1

) (
eiyξ − 1

)
‖ξ‖2H+d

dξ

(2π)
d
2

=
1

2

(
‖x‖2H + ‖y‖2H − ‖x− y‖2H

) ∫
Rd

(
e−ixξ − 1

) (
eiyξ − 1

)
‖ξ‖h(x)+h(y)+d

dξ

(2π)
d
2

=
Ch(x)+h(y)

2

2

(
‖x‖h(x)+h(y) + ‖y‖h(x)+h(y) − ‖x− y‖h(x)+h(y)

)
Replacing by h(x)+h(y)

2 in C(s) and using the identity xΓ(x) = Γ(x+ 1) yields the announced equality.[2]
Let us define

χλ(x, y) =

∫
R

e−ixy − 1

|ξ|y+ 1
2

Ψλ(ξ)
dξ

(2π)
1
2

In the proposition, we give another proof of the almost sure uniform convergence on a compact K of the series

=
1

C (h(x))
1
2

∑
λ∈Λ+

χλ (t, h(t)) ηλ (5) with ηλ = H

Proposition 3.2. Let h be function locally Hölder continuous with exponent β then we show the following results.
1- the uniform convergence of the series on a compact K∑

j>J,k∈Z
χj,k,1 (t, h(t)) ηj,k,1 −→ 0 when J → +∞.

2- For j > 0 the uniform convergence of the series on K∑
|k|>K

χj,k,1 (t, h(t)) ηj,k,1 −→ 0 when K → +∞.

3- The uniform convergence of the series on K∑
j>J,k∈Z

χ̃0,k,0 (t, h(t)) η0,k,0 −→ 0 when K → +∞.
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4- The uniform convergence of the series on K∑
j>J,k∈Z

χ0,k,0 (t, h(t)) η0,k,0 −→ 0 when K → +∞.

5- Deduce from the previous questions the almost sure uniform convergence of the series (5) to a mBm.
1- Since h is continuous on K the minimum a = inf {h(t), t ∈ K} is positive.

|
∑

j>J,k∈Z
χj,k,1 (t, h(t)) ηj,k,1| 6

∑
j>J

2−aj
∑
k∈Z

ln (1 + j)
1
2 + ln (1 + |k|)

1
2

1 + |2jt− k|2
+

ln (1 + j)
1
2 + ln (1 + |k|)

1
2

1 + |k|2

and we get

|
∑

j>J,k∈Z
χj,k,1 (t, h(t)) ηj,k,1| 6 C2−a

′
j

where a
′
< a. It shows the almost sure uniform convergence on K.

2- As in the provious question

|
∑
|k|>K′

χj,k,1 (t, h(t)) ηj,k,1| 6 C2−aj 6
∑
|k|>K′

ln (1 + j)
1
2 + ln (1 + |k|)

1
2

1 + |2jt− k|2
+

ln (1 + j)
1
2 + ln (1 + |k|)

1
2

1 + |k|2

Let us show the almost sure uniform convergence on K of
∑
|k|>K′

1
1+|2jt−k|2 . Let us denote by

k
′
(
K

′
)

= inf
{
|2jt− k|2, ∀t ∈ K, ∀k ∈ Z, |k| > K

′
}

and let us remark that limK′→k
′
(
K

′
)

=∞ since K is compact, Hence∑
|k|>K′

1

1 + |2jt− k|2
6 C

∑
|k|>k′ (K′ )

1

k2
→ 0 when K

′
→ +∞

The uniform convergence on K of
∑
|k|>K χj,k,1 (t, h(t)) ηj,k,1 is a consequence of the previous fact.

3-

|
∑
|k|>K′

χ̃0,k,0 (t, h(t)) η0,k,0| 6 C
∑
|k|>K′

(
1

1 + |t− k|2
+

1

1 + |k|2

)
→ |η0,k,0|

which almost surely uniformly convergence on K by similar arguments as the one we used in the previous question.
4- Let us consider

MK′ (t) =
∑

0<k<K′

χ̃0,k,0 (t, h(t))− χ0,k,0 (t, h(t)) η0,k,0

MK′ (t) = E

(
C

∫
|ξ|6 4

3π

itξ − 1
2t2 ξ

2

|ξ| 12 +h(t)
W̃+(dξ)/τK′

)
where τK′ = σ

(
η0,k,0, 0 6 k 6 k

′
)

Morever the process

χ(t, h(t)) =

∫
|ξ|6 4

3π

itξ − 1
2t2 ξ

2

|ξ| 12 +h(t)
W̃+(dξ) is almost surely continuous.

MK converges almost surely uniformly on every compact. The same property is obviously true for∑
0<k<k′

(
χ̃0,k,0 (t, h(t))− χ0,k,0 (t, h(t))η0,k,0

)
Hence we get the result.
5- Since the normalization function is analytic and non vanishing, and h is continuous 1

C(h(x))
1
2

is bounded on K, and the result

is a consequence of 1, 2 and 4.
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Proposition 3.3. Let h : Rd → (0, 1) be a β-Hölder continuous multifractional function and Bh be the corresponding
multifractional Brownian field let us assume β > supx∈Rdh(x), then, for every x ∈ Rd the mBf is strongly locally
asymptotically self-similar, with tangent field a fractional Brownian field with Hurst exponent H = h(x). More precisely

lim
ε→0+

(
Bh (x+ εu)−Bh (x)

2h(x)

)
=d BH (u)u∈Rd (7)

Proof. Let us fix x ∈ Rd, for every u1, u2 ∈ Rd

E (Bh (x+ εu1)−Bh (x)) (Bh (x+ εu2)−Bh (x))

ε2h(x)
=

1

2ε2h(x)
× E (Bh (x+ εu1)−Bh (x))

2

+ E (Bh (x+ εu2)−Bh (x))
2

− E (Bh (x+ εu2)−Bh (x+ εu1))
2

Hence,(
lim
ε→0+

E (Bh (x+ εu1)−Bh (x)) (Bh (x+ εu2)−Bh (x))

ε2h(x)

)
=

1

2

(
‖u1‖2h(x) + ‖u2‖2h(x) − ‖u1 − u2‖2h(x)

)
which yields the convergence of finite dimensional margins
then, to have the convergence in distribution in the space
of continuous functions endowed with the topology of the
uniform convergence on every compact, we have to prove the
lightness of the renormalized increments.

Yε(u) =
Bh (x+ εu)−Bh (x)

εh(x)

Let us fix a compact K then

lim
ε→0

E (Yε (u1)− Yε (u2))
2

‖u1 − u2‖2h(x)
= 1

Uniformly when u1, u2 are in the compact K, hence

supε>0E (Yε (u1)− Yε (u2))
2 6 C‖u1 − u2‖2h(x)

then, one can choose p ∈ N such that ph(x) > d since

E (Yε (u1)− Yε (u2))
2p 6 C‖u1 − u2‖ph(x)

4. Conclusion and Comments

After having determined the covariance function, we give
in proposition 2 another proof of almost sure uniform
convergence on compact K of the series.

We will finish by showing that the m.B.f is locally
asymptotically self-similar, with field or fractional Brownian
field with Hurst exposant H = h(x).

Actually if we consider the series expansion of the mBm and
consider only a finite number of terms in∑

λ∈Λ

χλ(t, h(t))ηλ

The sum process cannot be in general more regular than
h. On the other hand the Hölder exponent of the sample
path of the mBm is related to the behavior of χλ(x, y) when
the frequency part j of λ = (j, k) tends to infinity. So, in

some sense, the obtruction to have an irregular multifractional
function is a low frequency problem [3]. These considerations
lead to propose a generalized model of the mBm, where the
multifractional function h(t) may depend of the frequency and,
this becomes a function (t, ξ)→ H(t, ξ) [10] and [6].

Let us discurs more precisely assumptions required for this
function.

Hypothesis A functionH : R×R→ [a, b] ⊂ [0, 1] is called
a frequency lift of a multifractional function hn if

h(t) = limξ→+∞H(t, ξ)

H(t,−ξ) = H(t, ξ)

H is twice differentiable with aspect to the variable ξ and
satisfies

(1) for 0 < |ξ| 6 4π
3 H(t, ξ) = b

(2) for 4π
3 < |ξ|, ∃ g such that 0 < g < min(a2 ,

1
4 ) and ∃β

such that b < β 6 1

|∂
kH

∂ξk
(t, ξ)− ∂kH

∂ξk
(t

′
, ξ)| 6 C|ξ|g−k|t− t

′
|β

for t, t
′ ∈ [0, 1] and k = 0, 1, 2

|∂
kH

∂ξk
(t, ξ)| 6 C|ξ|g−k

for t ∈ [0, 1] and k= 0, 1, 2.
These assumptions, that are needed to construct an Holder

continuous model, are quite technical.
If one wishes a model similar to mBm but for an irregular

multifractional functions h, we have to construct a frequency
lift of the desired multifractional function h [13].

In Hypothesis the cut-off at ξ = 4π
3 is arbitrary and be

replaced by any non - negative constant. The inequality0 <
g < min(a2 ,

1
4 ) has a deeper meaning : it expresses the fact

that the Hölder constant of H(t, ξ) cannot grow too fast when
ξ → +∞. Finally, the inequality b < β is similar to the
conditions β > supx∈Rdh(x) in prop 3.
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