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Abstract: In this paper, an analysis is performed to explorethe transient, laminar two-dimensional, mixed convection 

boundary layer flow of a viscous and incompressible fluid past a vertical wedge taking into account the effect of magnetic field. 

With appropriate transformations the boundary layer equations are reduced to a local nonsimilarity equations and the solutions 

are obtained employing three distinct methods, namely, (i) perturbation method for small time; (ii) asymptotic solution method 

for large time; (iii) straight forward finite difference method for any time. The agreement between the solutions obtained from 

prescribed methods is found to be excellent. In this study the evaluation of skin-friction coefficient and the local Nusselt number 

with the effects of different governing parameters such as different time, τ, the exponent, m (= 0.4, 0.5, 1.0), mixed convection 

parameter, λ (= 0.0, 0.2, 0.4) and magnetic field parameter, M (=0.0, 1.0) for fluids having Prandtl number, Pr= 0.72, 1.0 and 

7.0have been discussed. It is observed that both the local skin friction and local Nusseltnumber decreases due to an increase in the 

value of M. It is also found that an increase in the value of Prandtl number, Pr, leads to a decrease in the value of local skin 

friction coefficient and the value of local Nusselt number coefficient increases with the increasing values of Prandtl number. 

Keywords: Transient Flow, Mixed Convection, Magnetohydrodynamics, Boundary Layer, Wedge Flow 

 

1. Introduction 

The laminar boundary layer flow of an incompressible fluid 

past bodies of different geometries has been studied with a 

great importance because it has a considerable curiosity among 

scientists and researchers. Many practical applications can be 

provided by incompressible boundary layer flow over two 

dimensional or axisymmetric bodies. The steady Falkner-Skan 

problem has beenstudied by many investigators such as Leal 

[1], Gersten and Herwig [2], Schlichting and Gersten [3]. The 

skin friction and heat transfer in two-dimensional, viscous, 

incompressible laminar flow over wedge-shaped bodies can be 

calculated accurately by solving the boundary-layer equations. 

Falkner and Skan [4] first deduced the momentum boundary 

layer equation for Falkner-Skan flow past a wedge, with 

potential flow velocityue(x) =U0x
m. Later, Hartree [5] 

investigated the similarity solutions of the flow in detail. He 

obtained the solutions in terms of velocity distribution for 

different values of pressure gradient parameter. For flow over 

an arbitrary body shape with known pressure or velocity 

distribution where there exists no similarity, the skin friction 

and heat transfer are conventionally found by an approximate 

method, either the integral method or the equivalent wedge flow 

approximation. For most engineering applications, sufficiently 

accurate result can be obtained using both of these two methods. 

It is necessary to have the solutions of the boundary-layer 

equations for wedge type flows to apply the equivalent wedge 

flow method for the prediction of skin-friction and heat transfer. 

The skin friction and heat transfer for incompressible laminar 

flow over porous wedges with suction subjected to variable 

wall temperaturehave been obtained Koh and Hartnett [6]. The 

similarity solution had been obtained when the variations of the 

wall temperature and the suction rate are proportional to 

power-law of x. From the practical point of view, however, the 

surface mass-flux with constant velocity may be more easily 

realized than with ( )1 /2m
x

− , where x is the distance from the 

leading edge, m the pressure gradient parameter. 

The transient conditions of motion in fluids have become 
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very important in recent years due to its application in some 

engineering fields of aerodynamics and hydrodynamics. 

There is a huge volume of literature on unsteady, forced 

convection boundary-layer flows past bodies of different 

geometries that give rise to the Falkner-Skan equations, see, 

for example, Riley [11], Telionis [12], and Ludlow et al. [13]. 

When the fluid is assumed to have constant properties, the 

problem reduces to an uncoupled, laminar boundary-layer 

flow and any changes in the temperature do not affect the fluid 

velocity field. When the thermo physical fluid properties 

depend on the temperature the problem becomes coupled and 

then the fluid velocity is also a function of time. Smith [14] 

initiated the study of the unsteady, incompressible forced 

convection, boundary-layer flow past a semi-infinite wedge 

impulsively set into motion. This problem was subsequently 

solved numerically by Nanbu [15] using the method proposed 

by Hall [17] and later it was modified by Harris et al. [18]. 

Laminar boundary-layer flow over wedge with 

suction/injection has been discussed by Kafoussias and 

Nanousis [7] and Devi and Kandasamy [29]. Hossain et al. [9] 

examined a steady two dimensional laminar forced flow of a 

viscous incompressible fluid past a horizontal wedge with 

uniform surface heat flux. 

The combined effect of both free and forced convection, 

which is known as mixed convection has also been the focus 

of research because of its technical applications. Kumari and 

Gorla [8] carried out a boundary-layer analysis considering 

the combined convection along a vertical non-isothermal 

wedge embedded in a fluid-saturated porous medium. A 

steady mixed convection boundary layer flow over a vertical 

wedge with the effect of magnetic field embedded in a porous 

medium has been studied by Kumari et al. [10]. The unsteady 

mixed convection boundary-layer flow along a symmetric 

wedge with variable surface temperature has been analyzed by 

Hossain et al. [16]. In their analysis, Hossain et al. [16] 

obtained the solution of the problem in terms of skin friction 

and heat transfer using the implicit finite difference method 

together with the Keller box elimination technique [19]. 

A combination of fluid mechanics and electro-magnetism is 

regarded as magnetohydrodynamics (MHD). It is the behavior 

of electrically conducting fluid in the presence of magnetic 

field. The study of the flow of electrically conducting fluid in 

the presence of magnetic field is important from a technical 

point of view. Due to the growing demand of technological 

appliances, there are many cases in which magnetic fields are 

strongly encountered in an electrically conducting fluid, for 

example, electric power generation, astrophysical flows, solar 

power technology, space vehicle re-entry, nuclear engineering 

applications, etc. The MHD boundary-layer flow, which finds 

its application in nuclear reactors and in the boundary layer 

control in the field of aeronautics is extensively studied by 

Sparrow and Cess [20], Singh and Cowling [21] and Wilks 

[22]. Wilks [22] provides the ground on which solution for 

large x can be obtained via matched asymptotic expansion 

method with the aim of achieving consistency. Cobble [23] 

analyzed the solution using the similarity analysis considering 

the effects of a magnetic field. Later, Hossainet al. [24] 

analyzed the combined forced and free convection 

boundary-layer flow of an electrically conducting fluid in the 

presence of transverse magnetic field. Ganesan and Palani [25] 

and Palani and Kim [26] proposed a study of the problem of 

unsteady natural convection flow of a viscous incompressible 

electrically conducting fluid past an inclined plate, under the 

influence of magnetic field. 

Motivated by the aforementioned investigations, the present 

analysis is devoted to study the transient, laminar mixed 

convection boundary-layer flow of an incompressible, viscous 

fluid past a wedge with the presence of magnetic field. The 

governing boundary layer equations are reduced to non-linear 

partial differential forms usingappropriate transformations. 

The transformed boundary layer equations are solved 

numerically using three distinct methods, namely the finite 

difference method for all time regime, the perturbation 

technique for small time regime and the asymptotic solutions 

for large time regime. All the solutions are obtained in terms 

of skin friction and Nusselt number for different values of 

Prandtl number Pr, magnetic parameter M, pressure gradient 

parameter m and the Richardson number λ , which is the 

ratio between LGr  and 2
LRe . The effects of varying M, m, 

Prand λ , on the shearing stress and the heat transfer rate in 

terms of skin friction and Nusselt number, respectively, are 

shown both in tabular and graphical forms. 

2. Mathematical Formulation 

A two-dimensional, unsteady, laminar mixed convection 

flow of a viscous incompressible electrically conducting fluid 

through a uniformly distributed transverse magnetic field of 

strength B0 past a wedge with a distributed heat source is 

considered. Due to buoyancy effects the flow over the wedge 

develops instantaneously and its velocity is given by, 

( )   1

m

e

x
u x U for m

L
∞
 = ≤ 
 

 

The flow configuration and coordinate system are shown in 

Figure 1. 

 

Figure 1. Flow model with coordinate system. 

The Lorentz force, F, is a result of the magnetic field effects 
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on the electrically conducting fluid and is determined from the 

following equations: 
                       (1) 

                 (2) 

         (3) 

Here �̅ and 	�� are the coordinates along with and 

perpendicular to the wedge surface, ��and�̅are the velocity 

components associated with the direction of increasing 

coordinates �	�and ��respectively,			� is the time variable,	
�  is 

the fluid temperature in the boundary layer, TW and T∞are the 

temperature of the wall and ambient fluid respectively, � is 

the density, σ is the electrical conductivity, k is the thermal 

conductivity of the fluid, µis the coefficient of viscosity, g is 

the acceleration due to gravity, β is the coefficient of 

volumetric expansion, Cp is the specific heat at constant 

pressure, L is the characteristic length and m is the pressure 

gradient related to the included angle �
 by � = 	
/(2 −


). 

The boundary conditions for the present problem are: 

0, 0, ( ) at 0wu v T T x y= = = =  

( )eu u x= , 0T →  as y → ∞         (4) 

, , ,

, , ,

1/ 2 1/ 2
L L

e W
e L

r

x y u v
x y Re u v Re

L L U U

u T TU U L
u t t T Re

U L T T ν

∞ ∞

∞∞ ∞

∞ ∞

= = = =

−
= = = =

−

      (5) 

The velocity over the wedge is now given by 

( ) ,m
eu x x= for 1m ≤  

and, on introducing the above dimensionless dependent and 

independent variables given in (5) in equations (1)-(3), the 

following dimensionless form of the governing equations is 

obtained: 

0
u v

x y

∂ ∂+ =
∂ ∂

                (6) 

( )
2

2

2

e
e e

uu u u u
u v u T M u u

t x y x y
λ∂∂ ∂ ∂ ∂+ + = + + − −

∂ ∂ ∂ ∂ ∂
      (7) 

2

2

T T T 1 T
u v

t x y Pr y

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

           (8) 

The boundary conditions (4) then take the form: 

0,u = 0,v = 2 1mT x −= at 0y = ( ) ,m
eu u x x= = 0T → as y → ∞ For 0t ≥  and 1m ≤             (9) 

In the above equations, Pris the Prandtl number, GrL is the Grashofnumber, ReL is the Reynolds number,λ is the mixed 

convection parameter(termed as the Richardson’s number) and Mis the magnetic field parameter, which are defined as 

,
pC

Pr =
k

µ 3

2

( )
,r

L

g T T L
Gr

β
ν

∞−= L

U L
Re

ν
∞= , 2

L

L

Gr

Re
λ = and 

2
2 0B L

M
U

σ
ρ ∞

=  

The number of independent variables in the governing equations (6)-(8) can be reduced from three to two by introducing the 

non-dimensional, reduced stream function ( ), ,F ξ τ η  and the non-dimensional, reduced temperature function ( ), ,G ξ τ η  

according to, 

( )( ) ( )
11

22 2 1 , , ,

m

x e Fτψ ξ τ η
+

−= − ( )( )
11

22 2 1 ,

m

x e yτη
− −

−= − ( )2 1
, ,

m
T x G ξ τ η−= , 1mx tτ −= and 1 mxξ −=      (10) 

Whereη  is a non-dimensional similarity variable and ψ  is the stream function, which is defined in the usual manner

u
y

ψ∂=
∂

and v
x

ψ∂= −
∂

 

Now, substituting the above group of transformations given in (10) into (6) to (8) one obtains the following non-similarity 

equations: 

0
u v

x y

∂ ∂+ =
∂ ∂

22

0

2
( ) ( )e

e e

u Bu u u u
u v u g T T u u

t x y x y

σν β
ρ∞

∂∂ ∂ ∂ ∂+ + = + + − − −
∂ ∂ ∂ ∂ ∂

2

2

p

T T T k T
u v

t x y C yρ
∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂
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( )( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )( )

2

2

1 1 1 2 1 1

2 1 2 1 1

2 1 1 2 1 1

F e F m e m e FF m e F

F F F
e G m e F F

F F
m e F F M e F

τ τ τ τ

τ τ

τ τ

η τ

λ τ
τ τ τ

ξ ξ
ξ ξ

− − − −

− −

− −

 ′′′ ′′ ′′ ′+ + + − + − + − −
 

′ ′∂ ∂ ∂   ′ ′′= − − + − − −   ∂ ∂ ∂   

′ ∂ ∂′ ′′ ′+ − − − + − − ∂ ∂ 

                   (11) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1
1 1 1 2 2 1 1

2 1 2 1 1

2 1 1

G e G m e m e FG m e GF
Pr

G G F
e m e F G

G F
m e F G

τ τ τ τ

τ τ

τ

η τ

τ
τ τ τ

ξ
ξ ξ

− − − −

− −

−

 ′′ ′ ′ ′+ + + − + − − − −
 

∂ ∂ ∂ ′ ′= − + − − − ∂ ∂ ∂ 

 ∂ ∂′ ′+ − − − ∂ ∂ 

               (12) 

The corresponding boundary conditions transform to 

( ) ( ), , 0 , , 0 0,F Fξ τ ξ τ′= = ( ), , 0 1G ξ τ =  

( ), , 1,F ξ τ′ ∞ = ( ), , 0G ξ τ ∞ =          (13) 

In the above equations, prime denotes differentiation of the 

functions with respect to η  only. 

The above equation is applicable for 0 .τ≤ ≤ ∞  

In practical applications, two physical quantities of primary 

interest are to be determined, such as, surface shear stress and 

the rate of heat transfer at the surface. These may be obtained 

in terms of the skin friction coefficient, 

( ) ( )( )2
/f w eC x u xτ ρ=  

And the local Nusselt number, 

( ) ( )/w f wNu q x x k T T∞= −  

Where, ( )
0

w

y

u
x

y
τ µ

=

 ∂=  ∂ 
is the shear-stress along the 

surface, and ( )
0

w f

y

T
q x k

y =

 ∂= −  ∂ 
is the surface heat flux, 

where, k is the thermal conductivity of the fluid, and µ is the 

coefficient of viscosity. 

By introducing the non-dimensional variables (5) and the 

transformation (10), the skin friction coefficient, 
1

2
f xC Re  and 

the local Nusselt number, ,

1

2
xNuRe
−  can now be defined by 

( )( ) ( )
1 1

2( 1) 22 1 , ,0

m1

m2
f xC Re e F

τξ ξ τ
+

−−− ′′= −       (14) 

( )( ) ( )
3 1 1

2(1 ) 22 1 , ,0

m1

m2
xNuRe e G

τξ ξ τ
+

−− −− ′= − −        (15) 

After getting the values of ( ), , 0F ξ τ′′  and ( ), , 0G ξ τ′  

from the solutions of the governing equations (11)-(13) we 

obtain the values of the skin friction coefficient and the local 

Nusselt number from the relations (14) and (15). 

3. Methods of Solution 

The present problem described by the dimensionless 

equations (11)-(13) has been solved using the perturbation 

method for small time regime, the asymptotic method for large 

time regime and finally the finite difference method for any 

time regime. The methods of solution adopted by Hossain et al. 

[16] and Mahfooz et al. [27] are employed here. In the 

following subsections details of the methods of solution are 

illustrated. 

3.1. Perturbation Solutions for Small Time Regime 

Physically, at the initial stage of transient process, the 

development of the momentum and thermal boundary layers 

are due to the dominant diffusion on convection. For this 

regime, the equations (11) and (12) which is valid for any time 

regime, reduces to the following form 

( ) ( )

( ) ( )

2 2

2

2 2 1 2 1 2

2 1 2 1

F F F
F F m FF m F m F F G

F F
m F F M F

η τ τ τ τ λ
τ τ τ

τξ τξ
ξ ξ

′ ′∂ ∂ ∂   ′′′ ′′ ′′ ′ ′ ′′+ + + − = − − + −   ∂ ∂ ∂   

′ ∂ ∂′ ′′ ′+ − − + − ∂ ∂ 

                (16) 

( ) ( )

( )

21
2 2 2 1 2 1 2

2 1

G F G
G G m FG m GF m F G

Pr

G F
m F G

η τ τ τ τ
τ τ τ

τξ
ξ ξ

∂ ∂ ∂ ′′ ′ ′ ′ ′ ′+ + − − = − − + ∂ ∂ ∂ 

 ∂ ∂′ ′+ − − ∂ ∂ 

               (17) 
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and the corresponding boundary conditions become 

( ) ( ), , 0 , , 0 0,F Fξ τ ξ τ′= = ( ), , 0 1G ξ τ =  

( ), , 1,F ξ τ′ ∞ = ( ), , 0G ξ τ ∞ =         (18) 

Since near the leading edge, τ is small, series solution of 

the equations (16) and (17) may be obtained by using the 

perturbation method treating τ  as a perturbation parameter. 

Hence, we expand the functions ( ), ,F ξ τ η  and ( ), ,G ξ τ η
in powers ofτ  as given below: 

( ) ( )
0

, , ,i
i

i

F Fξ τ η τ ξ η
∞

=

=∑ and ( ) ( )
0

, , ,i
i

i

G Gξ τ η τ ξ η
∞

=

=∑                         (19) 

Now, substituting the expressions given in (19) into equations (16) and (17) and picking up the terms up to the O( 2τ ), we get 

the following sets of equations with boundary conditions: 

0 0 0F Fη′′′ ′′+ =                                               (20) 

0 0

1
0G G

Pr
η′′ ′+ =                                             (21) 

( ) ( )0 0,0 ,0 0,F Fξ ξ′= = ( )0 ,0 1,G ξ = ( )0 , 1,F ξ′ ∞ = ( )0 , 0G ξ ∞ =                         (22) 

( ) ( )2 2
1 1 1 0 0 0 0 02 2 1 2 2 1F F F m F F F G M Fη λ ξ′′′ ′′ ′ ′ ′′ ′+ − = − − + − − −                          (23) 

( )1 1 1 0 0 0 0

1
2 2 2 2 1G G G mF G m F G

Pr
η′′ ′ ′ ′+ − = − + −                               (24) 

( ) ( )1 1, 0 , 0 0,F Fξ ξ′= = ( )1 , 0 0,G ξ = ( )1 , 0,F ξ′ ∞ = ( )1 , 0G ξ ∞ =                         (25) 

( ) ( ) ( )2 1 1
2 2 2 1 0 0 1 0 1 1 1 0 04 2 1 2 3 1 2 2 1

F F
F F F m F F m F F mF F G M F m F Fη λ ξ ξ

ξ ξ
′ ∂ ∂′′′ ′′ ′ ′′ ′ ′ ′′ ′ ′ ′′ + − = − + − − − − + − −   ∂ ∂ 

  (26) 

( ) ( ) ( ) ( ) 1 1
2 2 1 1 0 0 1 0 1 0 1 0 0

1
4 2 1 2 3 2 2 1 2 1

G F
G G G m F G m F G mF G m G F m F F

Pr
η ξ

ξ ξ
 ∂ ∂′′ ′ ′ ′ ′ ′ ′ ′′ + − = − + − − + − + − −   ∂ ∂ 

   (27) 

( ) ( )2 2,0 ,0 0,F Fξ ξ′= = ( )2 , 0 0,G ξ = ( )2 , 0,F ξ′ ∞ = ( )2 , 0G ξ ∞ =                          (28) 

In these equations, primes denote differentiation with respect toη . Solutions of the above set of equations are obtained 

numerically employing the sixth order implicit Runge-Kutta-Butcher [34] initial solver together with the Nachtsheim-Swigert 

iteration scheme [35]. Knowing the values of 0 1 2 0 1, , , , ,F F F G G′′ ′′ ′′ ′ ′ and 2G ′  from the solutions of the equations (20)-(28), the 

values of the skin friction coefficient and that of the local Nusselt number can be obtained from the following expressions: 

( ) ( ) ( ) ( )
1

1/2 22( 1)
0 1 22 ,0 ,0 ,0

m

1/ 2 m
f xC Re F F Fξ τ ξ τ ξ τ ξ

+
−−  ′′ ′′ ′′= + + 

                          (29) 

( ) ( ) ( ) ( )
3 1

1/2 22(1 )
0 1 22 ,0 ,0 ,0

m

1/ 2 m
xNuRe G G Gξ τ ξ τ ξ τ ξ

+
−−  ′ ′ ′= − + + 

                       (30) 

The values of the skin-friction, 
1/ 2

f xC Re , and the Nusselt number, 1/ 2
xNuRe , are obtained from the expressions(29) and (30). 

3.2. Solutions for Large Time Regime 

For large time, i.e. when 1,τ >> values of 2e τ τ− −= and1 1e τ−− = . Thus the equations (11)-(13) take the following forms: 
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( ) ( ) ( )
( ) ( ) ( )

2 1 2

2

1 1 2 1 2

2 1 2 1 2 1

F
F F m m FF m F G

F F F F
m F F m F F M F

τ η τ λ
τ

τ ξ ξ
τ τ ξ ξ

− − ′∂  ′′′ ′′ ′′ ′+ + + + − + − = −   ∂ 

′ ′ ∂ ∂ ∂ ∂ ′ ′′ ′ ′′ ′+ − − + − − + −  ∂ ∂ ∂ ∂   

               (31) 

( ) ( ) ( )

( ) ( )

2 11
1 1 2 2 1 2

2 1 2 1

G
G G m m FG m GF

Pr

G F G F
m F G m F G

τ η τ
τ

τ ξ
τ τ ξ ξ

− − ∂ ′′ ′ ′ ′+ + + + − − − =  ∂
 ∂ ∂ ∂ ∂ ′ ′ ′ ′+ − − + − −  ∂ ∂ ∂ ∂   

                   (32) 

and the corresponding boundary conditions reduces to 

( ) ( ), , 0 , , 0 0,F Fξ τ ξ τ′= = ( ), , 0 1G ξ τ =  

( ), , 1,F ξ τ′ ∞ = ( ), , 0G ξ τ ∞ =                                     (33) 

Hence, we expand the functions ( ), ,F ξ τ η  and ( ), ,G ξ τ η in powers ofτ  as given below: 

( ) ( )
0

, , ,i
i

i

F Fξ τ η τ ξ η
∞

=

=∑ and ( ) ( )
0

, , ,i
i

i

G Gξ τ η τ ξ η
∞

=

=∑                        (34) 

Now, substituting the expressions given in (34) into equations (31) and (32) and equating the terms of like powers of τ to zero, 

we get the following sets of equations: 

( ) ( ) ( ) ( )2 20 0
0 0 0 0 0 0 0 01 2 1 2 2 1 2 1

F F
F m F F m F G m F F M Fλ ξ ξ

ξ ξ
′ ∂ ∂ ′′′ ′′ ′ ′ ′′ ′+ + + − = − + − − + − ∂ ∂ 

          (35) 

( ) ( ) ( ) 0 0
0 0 0 0 0 0 0

1
1 2 2 1 2 1

G F
G m F G m G F m F G

Pr
ξ

ξ ξ
 ∂ ∂ ′′ ′ ′ ′ ′+ + − − = − − ∂ ∂ 

                 (36) 

( ) ( )0 0,0 ,0 0,F Fξ ξ′= = ( )0 ,0 1,G ξ = ( )0 , 1,F ξ′ ∞ = ( )0 , 0G ξ ∞ =                      (37) 

In these equations, primes denote differentiation with 

respect to η . Since the equation (35)-(37) are non-similar 

equations; in order to solve these non-similar equations we 

have adapted the local nonsimilarity method described in the 

former chapter. At the second order of truncation, the terms 

involving derivatives of ξ  have been neglected. It can be 

seen that the resulting governing equations form a coupled 

nonlinear system of ordinary differential equations treating ξ
as a parameter. These equation are solved numerically using 

an implicit Runge-Kutta-Butcher [34] initial value solver 

together with the iteration scheme of Nachtsheim and Swigert 

[35] as discussed before. Solutions thus obtained for different 

values of physical parameters, in terms of local skin friction 
1

2
f xC Re  and the local Nusseltnumber

1

2
xNuRe
− , which are 

obtained by the following expressions (38) and (39) 

respectively, are compared with that obtained in the following 

section for entire time regime. 

( ) ( )
1

1
2( 1)

22 , ,0

m1

m2
f xC Re Fξ ξ τ

+
−− ′′=        (38) 

( ) ( )
3 1

1
2(1 )

22 , ,0

m1

m2
xNuRe Gξ ξ τ

+
− −− ′= −       (39) 

3.3. Solutions for Entire Time Regime 

For entire time regime, here the stream function 

formulation is used. The equations (11)-(13) will be solved by 

finite difference method. In this method, the system of 

equations is reduced to a system of second order differential 

equations by taking 

F u′ = and v F=  

The reduced equations are: 

( ) ( )2 2
1 2 3 4 5 6 41 1

u u v u v
u P u P u v P u P G P u u P u u P M uη λ ξ ξ

τ τ τ ξ ξ
 ∂ ∂ ∂ ∂ ∂   ′′ ′ ′ ′ ′+ + + − = − + − + − + −    ∂ ∂ ∂ ∂ ∂     

     (40) 
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1 2 7 4 5

1 G G v
P G P G v P Gu P P u G

Pr
η

τ τ τ
∂ ∂ ∂ ′ ′ ′+ + − = + − ∂ ∂ ∂ 

                               (41) 

And the boundary conditions are: 

( ) ( ), , 0 , , 0 0,v uξ τ ξ τ= = ( ), , 0 1G ξ τ =  

( ), , 1,u ξ τ ∞ = ( ), , 0G ξ τ ∞ =                                    (42) 

Where ��= ���, ( ) ( )2 ( 1) 1 1P m e m eτ ττ− −= + − + − , ( )3 2 1P m e τ−= − , ( )4 2 1P e τ−= − , 

( ) ( )5 2 1 1 ,P m e ττ −= − − ( )( )6 2 1 1P m e τ−= − − and ( ) ( )7 2 2 1 1P m e τ−= − −                (43) 

Now equations (40)-(41) subject to the boundary conditions (42) are discretized using central difference approximation along 

η-direction while backward difference is used for both ξ-direction and τ-direction. Thus we have a system of tri-diagonal 

algebraic equations of the form: 

( ), , 1 , 1 1, 2n n n
k i j k i j k i j kA W B W C W D k− ++ + = =                                (44) 

In the above equations, the subscript k(=1 and 2) represents the functions uandG respectively. 

Where , , ,k k k kA B C D  are given as below: 

( )2 25 64
1 3 2, 2, 2, 42 n n n

j j j

P PP
A P u u u P Mη ξ ξ

τ τ ξ
 

= + ∆ + + + − ∆ ∆ ∆ 
                            (45) 

( ) ( )
1

2, 2, 2, 1,1
1 2 2, 5 6

1
1 1

2 2

n n n n
j j j jn

j

v v v vP
B j j P v P Pη η η ξ

τ ξ

− − −
  = − + ∆ + − + + +  ∆ ∆  

                     (46) 

( ) ( )
1

2, 2, 2, 1,1
1 2 2, 5 6

1
1 1

2 2

n n n n
j j j jn

j

v v v vP
C j j P v P Pη η η ξ

τ ξ

− − −
  = − − ∆ + − + + +  ∆ ∆  

                       (47) 

( ) ( )
1

2 2, 1, 2
1 3 4 5 2, 4 2, 6 2, 4

n n
j jn n n

j j j

u u
D P P P u P G P u P Mη λ ξ ξ

τ ξ

− 
 = ∆ + + + + −

∆ ∆  
                        (48) 

( ) ( )
2

2 4 5 2,
n

j

2
A P P u

Pr

η
τ

∆
= + +

∆
         (49) 

( )15
2 1 2 2, 2, 2,

1

2

n n n
j j j

P1
B P P v v v

Pr
η

τ
− = − + ∆ + + − ∆ 

   (50) 

( )15
2 1 2 2, 2, 2,

1

2

n n n
j j j

P1
C P P v v v

Pr
η

τ
− = − − ∆ + + − ∆ 

    (51) 

( ) ( )
2

1
2 2, 4 5 2,

n n
j jD G P P u

η
τ

−∆
= +

∆
        (52) 

In the above equations i, j and n represent the grid points in 

ξ, η and τ direction, respectively. Knowing the values of

( ), , 0F ξ τ′′  and ( ), , 0G ξ τ′  from the above solutions we can 

calculate the values of the local skin friction, fc  and the local 

Nusselt number, Nu from the following expressions: 

( )( ) ( )
1 1

2( 1) 22 1 , ,0

m1

m2
f xC Re e Fτξ ξ τ

+
−

−− ′′= −    (53) 

( )( ) ( )
3 1 1

2(1 ) 22 1 , ,0

m1

m2
xNuRe e Gτξ ξ τ

+
−− −− ′= − −    (54) 

Table 1. Numerical values of local skin friction and Nusselt number 

coefficients against τ while Pr=0.72, m=0.5, λ=0.5 obtained by three different 

methods. 

ττττ 
1/ 2

f xC Re  -1/ 2
xNuRe  

All τ Small &Large τ All τ Small &Large τ 

  M=0.0   

0.01 5.58814 5.65643s 4.68592 4.70704s 

0.10 2.05613 2.17836s 1.49492 1.51200s 
0.50 1.48560 1.49208s 0.69460 0.71662s 

1.00 1.51896 1.54361s 0.52669 0.55475s 

2.00 1.56499 1.59030a 0.47531 0.49731a 
3.00 1.56498 1.58924a 0.47743 0.48489a 

4.00 1.56393 1.58924a 0.47900 0.48151a 

6.00 1.56433 1.57816a 0.47870 0.48005a 
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ττττ 
1/ 2

f xC Re  -1/ 2
xNuRe  

All τ Small &Large τ All τ Small &Large τ 

8.00 1.56474 1.57688a 0.47820 0.48003a 
10.00 1.56472 1.57641a 0.47815 0.48025a 

  M=1.0   

0.01 5.52785 5.65821s 4.68377 4.72704s 
0.10 1.88133 1.95520s 1.49429 1.53200s 

0.50 1.15290 1.39661s 0.69480 0.71662s 

1.00 1.15048 1.23353s 0.52625 0.58831s 
2.00 1.19360 1.15941a 0.46625 0.52276a 

3.00 1.18908 1.14670a 0.46372 0.49398a 

4.00 1.18646 1.14250a 0.46393 0.49196a 
6.00 1.18674 1.13975a 0.46344 0.49153a 

8.00 1.18717 1.13893a 0.46303 0.49191a 

10.00 1.18701 1.13860a 0.46302 0.49233a 

4. Results and Discussion 

In this present study, the mixed convection flows of an 

electrically conducting, viscous and incompressible fluid past 

a wedge in presence of magnetic field have been analyzed. 

The governing equations have been solved by using the 

straight forward finite difference method for the entire time 

regime. Numerical solutions are also obtained by using the 

perturbation method for small time regime and the asymptotic 

method for large time regime. The obtained numerical results 

are presented with the help of graphical illustrations as well as 

in tabular form. 

 

Figure 2. (a) Local skin friction and (b) Local Nusselt number for different values of magnetic parameter M against τ forPr=0.72, m = 0.5 and λ =0.5 at ξ = 0.3 

obtained by three distinct methods. 

With the purpose of ensuring the numerical solution, a comparison of the (a) local skin friction and (b) local Nusselt number 

obtained by the stream function formulation and the series solutions for small and large τ is shown in Figure 2, Figure 3 as well as 

in Table 1. It is evident from the figures that the solutions are in excellent agreement. 

 

Figure 3. (a) Local skin friction and (b) Local Nusselt number against ξ at different time steps for Pr=0.72, M=1.0, m = 0.5 and λ =0.5 obtained by three distinct 

methods. 

Figure 2(a) and 2(b) demonstrate the effects of magnetic 

field on the local skin friction coefficient,
1/ 2

f xC Re , and the 

local Nusselt number, -1/ 2
xNuRe , against τ respectively while 

Pr=0.7, ξ=0.3, m=0.5 and λ=0.5. From these figures it is 

observed that when magnetic parameter increases, then both 
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the local skin-friction and local Nusselt number decrease. 

The effects of parameter ξ on the local skin friction 

coefficient, 
1/ 2

f xC Re , and the local Nusselt number, 

-1/ 2
xNuRe , from the surface at different time steps are shown 

in Figure 3(a) and 3(b) respectively. In this figure the physical 

parameters are chosen to be Pr=0.72, M=1.0, m = 0.5 and λ 

=0.5. It is observed from this figure that the local skin friction 

is decreased considerably while the local Nusselt number 

increases as ξ increases. 

 

Figure 4. (a) Local skin friction and (b) Local Nusselt number against τ for different values of Prandtl number Pr while M=1.0, m = 0.5 and λ = 0.5 at ξ = 0.3. 

Figure 4(a) and 4(b) exhibits the effects of varying the 

Prandtl number, Pr(=0.72, 1.0, 7.0), on the local skin friction 

coefficient, 
1/ 2

f xC Re , and the local Nusselt number, 

-1/ 2
xNuRe , against τ respectively at M=1.0, m = 0.5, λ = 0.5 

and ξ = 0.3. Figure 4(a) shows that an increase in the value of 

Prandtl number, Pr, leads to a decrease in the value of local 

skin friction coefficient. And from Figure 4(b) it can be 

observed that the value of local Nusselt number coefficient 

increases with the increasing values of Prandtl number. 

 

Figure 5.(a) Local skin friction and (b) Local Nusselt number against τ for different values of λ while M=1.0, m = 0.5 and Pr= 0.72 at ξ = 0.3. 

Figure 5(a) and 5(b) illustrate the effects of changing the 

Richardson number, λ(=0.0, 2.0, 4.0), on the local skin friction 

coefficient, 
1/ 2

f xC Re , and the local Nusselt number, 

-1/ 2
xNuRe , against τ respectively at M=1.0, m = 0.5, Pr= 0.72 

and ξ = 0.3. Figure 5(a) and 5(b) show that an increase in the 

value of Richardson number, λ, leads to an increase in thevalue 

of local skin friction coefficient and the value of local Nusselt 

number coefficient respectively. 
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Figure 6. (a) Local skin friction and (b) Local Nusselt number for different values of magnetic parameter M against τ forPr=0.72, m = 0.5 and λ =0.5 at ξ = 0.3. 

 

Figure 7. (a) Local skin friction and (b) Local Nusselt number for different values of exponent m against τ for Pr=0.72, M = 1.0 and λ =0.5 at ξ = 0.3. 

Figure 6(a) and 6(b), we can see that when magnetic 

parameter increases, both the local skin The effects of varying 

values of the magnetic parameter, M(=0.0, 1.0, 1.25) on the 

local skin friction coefficient, 
1/ 2

f xC Re , and the local Nusselt 

number, -1/ 2
xNuRe , against τ are displayed in Figure 6(a) and 

6(b) for the case ofPr=0.72, m = 0.5 and λ =0.5 at ξ = 0.3. By 

observing the friction coefficient and the local Nusselt number 

coefficient decreases 

The effects of varying values of the exponent, m(=0.4, 0.5, 

1.0) on the local skin friction coefficient, 
1/ 2

f xC Re , and the 

local Nusselt number, -1/ 2
xNuRe , against τ are displayed in 

Figure 7(a) and 7(b) for the case ofPr=0.72, M = 1.0 and λ 

=0.5 at ξ = 0.3. Figure 7(a) and 7(b) show that an increase in 

the value of m, results in increasing the value of local skin 

friction coefficient and the value of local Nusselt number 

coefficient respectively. 

5. Conclusion 

In this study it has been sought to determine how the 

presence of magnetic parameter affects the mixed convection 

unsteady two-dimensional boundary layer flow and heat 

transfer past a wedge with variable surface temperature. 

Solutions of the governing local nonsimilarity equations are 

obtained by three distinct methodologies, namely the 

perturbation method for small time τ, the asymptotic solution 

method for large time τ and the finite difference method of all 

time τ. Detailed numerical calculations have been carried out 

and presented in terms of local skin friction and Nusselt 

number. In general it is seen that the asymptotic solutions for 

small and large values of τ are in excellent agreement with the 

finite difference solutions. 

From the above investigations, the following conclusions 

may be drawn: 
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1. An increase in the value of M serves to decrease both the 

local skin friction and local Nusselt number. 

2. An increase in the value of mleads to increase both the 

local skin friction and local Nusselt number. 

3. An increase in the value of Richardson number, λ, leads to 

an increase in the value of local skin friction coefficient as 

well as the value of local Nusselt number coefficient. 

4. An increase in the value of Prandtl number, Pr, leads to a 

decrease in the value of local skin friction coefficient and 

the value of local Nusselt number coefficient increases 

with the increasing values of Prandtl number. 
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