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Abstract: The two dimensional vector form of the Navier-Stokes equation is reduced to a fourth–order equation for the 

streamfunction. Boundary conditions arise from considerations of the no-slip constraint at the surface as well the interaction of 

viscous flow with potential-flow at the edge of the boundary layer. By employing a separation of variables technique and 

introducing certain dimensionless variables, the stream function equation is converted into its dimensionless analog with 

appropriate boundary conditions. The resulting quasi-linear third-order ordinary differential equation facilitates the numerical 

computation of the velocity and the pressure terms. This is achieved by solving the nonlinear two-point boundary-value 

problem with a time-marching method involving a Crank-Nicolson and Newton-linearization schemes until steady-state 

solution is obtained. The velocity, stream-function and pressure profiles are discussed with reference to various computation 

parameters and are found to be in good agreement with the physics of the problem. It was also found that there is no penalty in 

accuracy for a broad range of CFL numbers. However as the CFL number exceeds a certain threshold, the approach to 

convergence becomes erratic as indicated by the spurious results produced by the solution residuals.  

Keywords: Navier-Stokes Equation, Streamfunction, CFL Number, Fourth-Order Equation,  

Quasi-Linear Third-Order Differential Equation, Crank-Nicolson, Newton-Linearization 

 

1. Introduction 

It is well known that that the flow at stagnation point, 

serves as a canonical model of a leading-edge boundary 

layer. Research activity in this area, closely followed the 

discovery of boundary-layer concept itself. The measurement 

of the pressure field on the surface of a cylinder by Prandtl 

led to the discovery by Hiemenz (1911) of an exact solution 

of the Navier-Stokes equations which fully describes the 

stagnation point flow and which up till today bears his name.  

Stagnation point flow has long been a special area of 

research activity for fluid dynamicists because of its certain 

implications. The heat transfer rates are usually maximum in 

the stagnation region and are of special interest in areas such 

as atmospheric reentry of space crafts, in rarefied hypersonic 

flows and in power output devices. The impulsive interaction 

of a fluid with a solid surface as well the entrainment of 

ambient fluid separates it from Blasius flow past a flat plate. 

Studies involving stagnation point flow have embraced many 

areas of computational enquiry for example in 

hydromagnetic flows it was chosen by Na (1979) to illustrate 

the application of finite difference method (FDM) to a third-

order boundary value problem. It is also applicable to 

boundary layers along material handling conveyors, to 

arterial blood flow problems as well as aerodynamic 

extrusion of plastic sheets. Later studies have also extended 

in numerous ways to include various physical considerations. 

The study of the flow field in stagnation point flow near a 

stretching sheet in nanofluids is worthy of note. Makinde and 

Mishra (2015) studied the stagnation point flow of a variable 

viscosity fluid past a stretching surface with radiative heat. 

They carried out a parametric study involving the effects of 

various thermophysical properties on a nanofluid velocity, 

temperature, concentration, skin friction, Nusselt and 

Sherwood numbers. A stagnation point flow of MHD 

chemically reacting nanofluid over a stretching convective 

surface with slip and radiative heat was carried out by 

Makinde et al. (2016). They considered the thermophoresis 

and Brownian motion on hydromagnetic stagnation point 

flow of a nanofluid with heat and mass transfer over a 
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stretching convective surface. By the use of similarity 

transformation, the nonlinear governing partial differential 

was reduced to a set of nonlinear ordinary differential 

equations which were then solved by the shooting method in 

conjunction with the Runge-Kutta Fehlberg technique. In 

another related study Agbaje et al. (2015) adopted a spectral 

perturbation method (SPM) to study the governing equations 

of flow and heat transfer of an incompressible electrically 

conducting fluid near the stagnation point on a stretching 

sheet. They concluded that the SPM scheme could handle 

complicated expansion more efficiently than the ordinary 

perturbation schemes. 

Perturbation techniques have also been applied to 

stagnation point flow for non-Newtonian fluids. Such flows 

exhibit huge numerical challenges because their constitutive 

equations generate momentum equations which are 

multiplied by the fluid viscoelastic parameters. As a result, 

the order of the governing differential equation exceeds the 

number of given boundary conditions and the problem 

converts to a singular perturbation type. The problem was 

first successfully tackled by Rajeshwari and Rathna (1962) 

using the Karman-Polhausen method. It was followed by the 

application of linear perturbation technique by Beard and 

Walters (1964). Numerical work in this area has been rather 

slow as seen by subsequent work by Davies (1966), Ng 

(1981) and Serth (1974). The most recent of these can be 

traced to Teipel (1986), Ariel (1992). Ariel (1993) introduced 

a numerical algorithm for computing the stagnation point 

flow of a second grade fluid with/without suction when the 

fluid is extracted from the plane at a uniform rate. He 

obtained asymptotic solutions valid for large values of the 

suction parameter. A similar attempt involving a perturbation 

technique was adopted by Massoudi and Ramezan (1992). 

Their analysis was found to be valid only for small values of 

the parameter that characterizes non-Newtonian fluids. A 

later improvement on their work was carried out Garg (1994) 

who used a pseudo-similarity technique.  

Because of the demands of modern technology, research 

on stagnation point flow is still an ongoing process. Studies 

have been carried out in such diverse areas as petroleum 

industries, flow towards solid boundaries in groundwater 

flows, flow of water towards bridge piers, towards 

hurricanes, permeable surfaces and geothermal energy 

extractions, etc. Ishak et al. (2009) studied MHD mixed 

convection flow near the stagnation point on a vertical 

permeable surface.  

Studies in engineered colloidal particles involving 

stagnation point flow have also started featuring prominently. 

Ibrahim and Makinde (2015) examined the effect of slip and 

convective boundary condition on magnetohydrodynamic 

(MHD) stagnation point flow and heat transfer due to Casson 

nanofluid past a stretching sheet and determined that the skin 

friction coefficient increases with an increase in Casson 

parameter and decreases with an increase in velocity ratio 

parameter. In a related work, Ibrahim and Shankar (2013) 

studied boundary layer flow and heat transfer of a nanofluid 

over a vertical plate with a convective surface boundary 

condition. They concluded that the local Nusselt and 

Sherwood numbers increase with an increase in convective 

parameter and Nusselt number. We may mention in passing 

that Casson flow is a prototype non-Newtonian fluid model 

and relates very much to viscoelastic fluids. We find such 

models very vital in the study of the flow behavior of 

industrial products like malt, liquid chocolate, syrup, tomato 

cream, fruit juices, honey, flow of blood through arteries and 

so on. Hence most of the earlier work done by Ariel (1993) 

on stagnation point flow for non-Newtonian fluid as well as 

those of Massoudi and Ramezan (1992) and Ibrahim and 

Makinde (2015) should be considered as benchmark work in 

this area of research. 

In the work reported herein, we deployed the vorticity 

equation to convert the two-dimensional, second order vector 

form of the Navier-Stokes equation to a fourth-order 

differential equation for the stream-function. The 

accompanying boundary conditions were accounted for by 

invoking the no-slip constraint at the surface as well as the 

constraint imposed by the inviscid flow regime at the far 

field. Adopting the separation of variables technique and 

introducing some dimensionless variables, the fourth order 

governing differential equation together with the boundary 

conditions were converted into a desired dimensionless third-

order differential equation. This equation originates from the 

Navier-Stokes equation and can be regarded as the viscous-

flow replacement of the Laplace’s equation for the stream-

function. Having established the relationship between the 

stream-function and the horizontal velocity, a time marching 

numerical procedure was introduced to solve the governing 

equation to steady state. Once we compute the velocity field, 

we can determine the pressure field by taking the divergence 

of the momentum equation to subsequently arrive at the 

Poisson equation for a two-dimensional incompressible flow. 

2. Model Formulation 

Consider the laminar two-dimensional flow an 

incompressible fluid impinging on a plate situated at y=0, 

(Figure 1).  

 

Figure 1. Stagnation-point flow and coordinate system. 

We seek the governing equations of the stagnation point 

flow by developing the stream-function equation for viscous 

flow via the Navier-Stokes equation. In order to 

automatically satisfy continuity, we introduce the stream 

function ψ  as defined by 
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,u v
y x

ψ ψ∂ ∂= = −
∂ ∂

                        (1) 

where u, v are components of the velocity vector. The 

continuity equation for the two-dimensional potential flow is 

given by: 

0
u v

x y

∂ ∂+ =
∂ ∂

                               (2) 

Stagnation point flow is not vorticity free and is 

proportional to the Laplacian of the stream-function. 

2ω ψ= −∇ k                                  (3) 

The vorticity is transported from the wall by the dual 

processes of convection and diffusion and the appropriate 

vorticity transport equation for a two-dimensional flow is 

given as: 

2ω ν ω• ∇ = ∇u                             (4) 

where ν  is the kinematic viscosity. 

Substituting equation (3) into equation (4) yields the 

equation for the stream-function. 

( ) ( )2 2 2 4ψ ν ψ ν ψ•∇ ∇ = ∇ ∇ = ∇u                  (5) 

where 
4∇  is the biharmonic operator. We hasten to comment 

on a few interesting features concerning equation (5). In 

addition to the continuity equation being unconditionally 

satisfied, this single equation combined with appropriate 

boundary conditions adequately describes a two-dimensional 

fluid flow and avoids some of the numerical complications 

inherent in the Navier-Stokes equation. It has only the 

kinematic viscosity ν  as a parameter. We also note that 

equation for creeping flow is satisfied when the left side is 

equal to zero. 

From equation (5), the required fourth order partial 

differential equation for the stream-function is given by. 

4 4 4 3 3 3 3

4 2 2 4 3 2 3 2
2

y yx x y y x x y y x y

ψ ψ ψ ψ ψ ψ ψ ψ ψν      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = + + +     ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
   (6) 

Appropriate boundary conditions are assigned to equation 

(6); two of them are due to the no-slip requirement at the 

surface and the second is assigned as a result of the 

interaction between the viscid and inviscid regions of the 

flow field far away from the plate. 

0, 0, 0

, ,

at y y x

as y y Ax x Ay

ψ ψ
ψ ψ

= ∂ ∂ = ∂ ∂ = 
→ ∞ ∂ ∂ → ∂ ∂ → 

        (7) 

We note in passing that since the boundary layer thickness 

is not known a priori, the boundary condition at the edge of 

the boundary layer is specified at a far enough distance from 

the plate that is at infinity so to speak. Typically one would 

solve the governing equation or the stream function ψ  with 

associated boundary conditions, instead of solving the 

Navier-Stokes and continuity equations directly for the 

velocity and pressure fields. Once the stream function is 

determined, It is possible to compute the velocity and 

pressure components. The price to be paid for this procedure 

is that the stream-function satisfies a fourth-order partial 

differential equation in contrast to the to the Navier-Stokes 

equation which is a second order partial differential equation. 

To enhance the numerical computation of equation (6) we 

first of all consider certain aspects of its analytic features. 

Since the potential velocity v depends on y and the other 

component u depends on x, the following form of stream 

function is suggested as solution.  

( ) ( ) ( ),x y x yψ = Ψ Φ                               (8) 

Substituting equation (8) in to equation (6) reveals the 

following details about the components of the stream 

function 

( )x AxΨ =                                   (9a) 

In addition, ( )yΦ  satisfies the following equation. 

23 2

3 2
1 0

d d d

A dydy dy

ν  Φ Φ Φ+ Φ − + = 
 

                (9b) 

with accompanying boundary conditions given as: 

( ) ( ) ( )0 0, ' 0 0, ' 1y as yΦ = Φ = Φ → → ∞      (9c) 

We can now recast the stream-function equations in terms 

of the following dimensionless variables in line with previous 

work by Ariel (ibid), Anderson (2001), Papanastasiou et al. 

(2000), Wilcox (2000).  

( ) ( )( ) ( ) ( ), , ,y A y x y Ax A yη ν ψ ϕ η ν≡ Φ ≡ ≡ Φ
 

where η  is a dimensionless independent variable, ( )ϕ η  is a 

dimensionless function and 
0

2A ψ=  where 
0

ψ  is a constant 

that defines a stream-function in the inviscid solution. 

Substituting these dimensionless variables into equations (9a) 

and (9b) produces the desired form of the dimensionless 

stream-function equations together with appropriate 

boundary conditions 

23 2

3 2
1 0

d d d
G

dd d

ϕ ϕ ϕ
ηη η

 + − + = 
 

               (10a) 

( ) ( ) ( )'0 0, 0 0, ' 1 asϕ ϕ ϕ η η= = → → ∞    (10b) 

The link between stream-function and velocity is 

established by: 

( ) ( )'
d

u
d

ϕη ϕ η
η

= =                         (11) 



 Applied and Computational Mathematics 2017; 6(2): 75-82 78 
 

Equations (10a) and (10b) can be rewritten as: 

( )
2

2

2
1

d u du
u

dd
ϕ

ηη
+ = −                       (12a) 

( ) ( ) ( )0 0, 0 0, 1,u u asφ η η= = → → ∞      (12b) 

Equation (12) has many attractive features, it obviates a 

rather restrictive approach of scaling down equation (10a) 

into systems of ordinary differential equations and 

corresponding boundary conditions. It admits and facilitates 

the application of many domain and boundary based 

techniques to the numerical solution of stagnation point 

flows. In the work reported herein, we have elected to apply 

a finite difference time-marching method to proceed to a 

steady state numerical solution and then determine the stream 

function by a trapezoidal rule resolution of the following 

integral ( ) ( )
0

u d

η

ϕ η η η= ∫ . Once we have determined the 

stream-function and the velocity fields, then it is time to 

handle the pressure. In order to achieve the pressure Poisson 

equation formulation, we take the divergence of the 

momentum equation and use the divergence free condition. 

We initiate this procedure by considering the x and y 

components of the 2-D Navier-Stokes equation, differentiate 

the first with respect to x and carry out the same procedure 

for the second with respect to y, add both and rearrange to 

finally yield: 

22

2 2
u v u v

p
x y y x

ρ
    ∂ ∂ ∂ ∂ ∇ = − + +     ∂ ∂ ∂ ∂      

        (13) 

Equation (13) is the Poisson equation for pressure which 

ensures that continuity is satisfied. It can be seen that both 

the pressure and velocity field are now coupled in a 

continuous domain. We still need to relate appropriate 

boundary conditions to equation (13) otherwise the 

computation will be fraught with errors in the pressure field 

and in the incompressibility conditions and the proposed 

scheme can not produce faithful results all the way to the 

boundary. For this paper, we employ a different approach in a 

similar spirit to the one used by Wilcox (ibid) and 

Papanastasiou (ibid). We observe that for stagnation point 

flow, Bernoulli’s equation can sometimes lead to some very 

interesting conclusions regarding flow along a streamline. 

And for such cases, the stagnation pressure is the sum of 

static and dynamic pressures. Because of the dynamic link 

between the pressure and velocity fields we expect both to 

approach the inviscid solution in the limit as y → ∞  (Figure 

1). This idea can be deployed in an easily computable form 

by noting that.  

( )2 2 21 2
stag

p p A x y as yρ→ − + → ∞        (14) 

where 
stag

p  is the stagnation pressure, and the second term of 

the right of equation (14) is the dynamic pressure. The 

following solution is suggested. 

( ) ( ) ( )2, 1 2
stag

p x y p A X x Y yρ= − +         (15a) 

Substituting equations (15a) and (10a) into equation (13) 

yields the following ( ) 2X x x=  and: 

( )
22

2
4 2, 0 0, 2

d Y d dY
Y y as y

dy dydy

 Φ= − = → → ∞ 
 

  (15b) 

Equation (15b) is an easily computable analog of equation 

(13). And the boundary conditions comply with the 

requirement that the pressure distribution agree with the 

inviscid value far from the location of the stagnation point. 

Following the procedure adopted in this study equation (15b) 

is put in a dimensionless form by introducing some 

dimensionless variables 

( ) ( ) ,P A Y y y Aη ν η ν≡ ≡ . The resulting second 

order ODE is represented as: 

( )
22

2
4 2, 0 0, 2

d P d dP
P as

d dd

ϕ η η
η ηη

 = − = → → ∞ 
 

   (16) 

We carry out a further simplification of equation (16) by 

using equation (10a) to eliminate ( )2
d dϕ η . The pressure 

equation becomes: 

2 3 3 2 2

2 3 3 2
2 2 2

d P d d d d d
G

d dd d d d

ϕ ϕ ϕ ϕ
η ηη η η η
 = + = + 
 

     (17) 

Finally an explicit equation for the pressure field is 

obtained by integrating equation (17) twice and applying the 

boundary conditions for equation (16) to yield. 

( ) ( )22
d

P
d

ϕη ϕ η
η

= +                        (18) 

The overall physics of the formulation is now fully 

justified. The stream-function is directly related to the 

velocity field whose changes result in acceleration of the 

fluid particles. At the same time, local accelerations are 

controlled by the vorticity field while the pressure field 

adjusts accordingly to establish a balance of the net force due 

to pressure and viscosity.  

3. Problem Discretization 

We recast the two- point boundary value problem 

(equation 12 a) in the following manner. 

( )1u u u
u u

ut
ϕ

η η η
 ∂ ∂ ∂ ∂= + + − ∂ ∂ ∂ ∂ 

            (19a) 

The boundary conditions are the same as specified in 

equation (12b). For the initial condition we assume a 

quadratic variation of ( )u η  near the surface. The 

discretization scheme we shall adopt here is the Crank-

Nicolson- Newton-Richtmeyer scheme. To this end equation 
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(19a) is put in the form: 

( )( ) ( )( )

1 1

1

1

1

2

1

2

1

2

n n n

i i

n n

i i

n n

i i

u u u

t n n

u u

F u F u

ϕ ϕ

η η η η

+ +

+

+

 ∆ ∂ ∂     = + +      ∆ ∂ ∂       

       ∂ ∂ ∂ ∂
 + +      ∂ ∂ ∂ ∂        

 +
 

    (19b) 

The following stencils are employed to handle the right 

side of equation (19b) 

1 1

1

n n n

ii i

n n

i

i

u u u
t

t

uu

η η η

η η

+ +

+

    ∂ ∂ ∂ ∂ ≈ + ∆ =      ∂ ∂ ∂ ∂       

 ∂∆ ∂ +   ∂ ∂   

       (19c) 

By the same token: 

( ) ( ) ( ) 1

1 1

2

2
n n nn

i i i

i

u u uu

η η η

+

− −− + ∂ ∂ = ∂ ∂ ∆ 
          (19d) 

Similarly the second component of the second derivative 

reads: 

( ) ( ) ( )1 1 1
1

1 1

2

2
n n n

n

i i i i
u u uu

η η η

+ + ++
− −∆ − ∆ + ∆ ∂∆∂ = ∂ ∂ ∆ 

     (19e) 

The general expression for a nonlinear term ( )uα α=  is 

given by: 

( ) ( ) ( ) ( )

( ) ( ) ( ) [ ]

1 11

1 12 21 1 2

n
n n nn n n

i i ii i i
i

n n nn

i ii i

u u u u hence
u

u u u u

αα α α α+ ++

+ +

 ∂ = + ∆ + ∆  ∂   

− ≈ − − ∆

    (19f) 

Equation (19) is put together to form a tridiagonal matrix 

in terms of the new dependent variable 

( )1 1 1n n n n

i i i i
u u u u+ + +∆ ∆ = −  and then solved with the Thomas 

algorithm. The above scheme can be applied 

straightforwardly to quantify the simulation residuals: 

1
2

1 2

2
1

n

n

i

i

du d u
r u

d d
ϕ

η η

+
+  

= + − + 
 

                       (20) 

After some numerical experimentation, we situated the 

upper finite-difference grid at 5η =  with the hope that it 

satisfies the condition at infinity. In order to enhance 

stability, we have adopted the time step limitation and the 

effective CFL number  

set by Anderson (1990):  

( )max max2

2
,

j

CFLt N t t
ϕ

η η

 
∆ = + = ∆ ∆ 

∆ ∆  

. 

4. Results and Discusion 

The algorithm developed herein is tested on some typical 

examples for stagnation-point flows. The interconnectedness 

between our three variables of interest namely velocity, 

stream-function and pressure has very well been established. 

Table 1 shows the numerical results for the horizontal 

velocity, pressure and stream-function with respect to the 

dimensionless independent variable η .  

Table 1. Numerical results for velocity, pressure and streamfunction. 

eta ( )η  u-velocity Pressure stream-function 

0 0 0 0 

2.0000e-01 2.2488e-01 4.5032e-01 2.3485e-02 
4.0000e-01 4.1120e-01 8.3015e-01 8.8031e-02 

6.0000e-01 5.6178e-01 1.1582e+00 1.8618e-01 

8.0000e-01 6.8060e-01 1.4580e+00 3.1115e-01 
1.0000e+00 7.7213e-01 1.7531e+00 4.5705e-01 

1.8000e+00 9.5279e-01 3.2581e+00 1.1630e+00 

2.0000e+00 9.6995e-01 3.7771e+00 1.3554e+00 
2.8000e+00 9.9600e-01 6.5931e+00 2.1450e+00 

3.0000e+00 9.9737e-01 7.4915e+00 2.3445e+00 

3.2000e+00 9.9874e-01 8.4707e+00 2.5443e+00 
3.4000e+00 9.9938e-01 9.5287e+00 2.7441e+00 

3.6000e+00 9.9968e-01 1.0666e+01 2.9440e+00 

3.8000e+00 9.9984e-01 1.1884e+01 3.1439e+00 
4.0000e+00 9.9992e-01 1.3182e+01 3.3439e+00 

4.2000e+00 9.9996e-01 1.4559e+01 3.5439e+00 

4.4000e+00 9.9998e-01 1.6017e+01 3.7439e+00 
4.6000e+00 9.9999e-01 1.7554e+01 3.9439e+00 

4.8000e+00 1.0000e+00 1.9172e+01 4.1439e+00 

5.0000e+00 1.0000e+00 2.0869e+01 4.3439e+00 

The outcome in each case not only agrees with the 

specified boundary conditions but also displays the unique 

relationships between them. We go a step further to display 

this by plotting the three variables with respect to the 

independent variable η . Figure 2 confirms that the horizontal 

velocity is zero at the surface ( )0η =  according to the no-

slip boundary constraint and asymptotically approaches the 

free-stream value far away from the stagnation.  

 

Figure 2. U-Velocity profile. 

A close look at the diagram also confirms that the profile 
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approaches 99% of the inviscid-flow value when the 

similarity variable 2.4η ≈ . This confirms that the viscous 

sub-layer has a thickness 2.4 Aδ ν≈ . the stream-function 

is determined as computation advances in time. A central 

difference approximation is used to evaluate equation (11). 

Using the boundary condition ( )0 0ϕ = , the rest of the profile 

can be evaluated. In addition, Figure 2 shows that unlike the 

horizontal velocity profile, the profile of the stream function 

does not approach the free-stream asymptotically though they 

both start at zero at the surface. The shape of the stream-

function profile in Figure 3 can be ascertained by looking 

intuitively at the area under the curve of the velocity profile 

that results from the relationship of the two dependent 

variables namely ( ) ( )
0

u d

η

ϕ η η η= ∫
 

 Figure 3. Stream-function profile. 

In addition the boundary conditions are satisfied at both ends of the profile. Once the stream-function is determined, 

calculation of the pressure field near the stagnation point is facilitated. This is the effective stagnation pressure in the inviscid 

flow above the stagnation point. It has both static and dynamic components. As with the velocity, it approaches the far-field 

inviscid solution as the vertical dimensionless coordinate η  approaches infinity. Figure 4 is in complete agreement with 

equation (16) which determines the trajectory of the pressure field and is different from the actual stagnation pressure due to 

contribution from its dynamic component. 

 

Figure 4. Pressure profile. 

Figure 5 is the plot of the residual error field. It is in total agreement with boundary layer theory. 
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Figure 5. Residual error profile. 

The ascending part of the plot in the region 0 1.4η≤ ≤  

reflects the numerical challenge imposed on the numerical 

scheme by the steep component of the velocity field within 

the same region. As the velocity field approaches the inviscid 

region the viscous effect decreases and as the far field is 

approached 1.5 2.4η≤ ≤  the velocity field displays an 

asymptotic profile. This accounts for the descending part of 

the residual profile. Some ‘wiggles’ are observed in the 

region around 2.5 3.1η≤ ≤  which corresponds roughly with 

the edge of the boundary layer profile.  

5. Conclusions 

The 2-dimensional stagnation point flow of an 

incompressible flow has been studied with a Crank-Nicolson-

Newton-Richtmeyer time scheme. Stable results were 

obtained with 51 grid points and a CFL number of 25. Plots 

produced herein in complete agreement with boundary layer 

theory. A noticeable aspect of this study is that it not only 

facilitates the computation of the pressure field which is 

hardly mentioned in many papers on stagnation point flow, 

the time matching procedure obviates the need for the 

introduction of systems of ODE for the eventual solution of 

the boundary-layer type governing equations. As a 

consequence it paves the way for the application of boundary 

and domain based numerical techniques to such problems. 

Nomenclature 

A stream-function constant 
u  velocity vector 

(u,v) velocity components 

(x,y) coordinates 

P pressure 

stag
p   Stagnation pressure 

Greek Symbols 
η

 
 dimensionless independent variable 

ψ   streamfunction 
ϕ   dimensionless stream-function 

Φ   dependent variable for the y component of the separable-variable stream-function formulation 
ρ   fluid density 

( )p η   pressure field  

ν   kinematic viscosity 
4∇   biharmonic operator 

( )xΨ   x-component of the separable variable expression for stream-function 
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