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Abstract: This paper studies the global exponential stability for a class of nonlinear dynamical systems. A new state feedback 

controller is designed, which can effectively stabilize this kind of nonlinear system to the equilibrium point at exponential rate. 

The feasibility of the method is proved theoretically, and an algorithm is systematically proposed to configure the related 

parameters of the controller. Then simulation results show the effectiveness of the proposed control method. 
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1. Introduction 

Over the past decade, many scholars have studied the 

stability problem of nonlinear dynamical systems and 

obtained some extraordinary nice conclusions [1]-[20], and 

these research results have been fully reflected in the practical 

application [5]-[7]. Among these, the most representative is 

the good application of chaos in secure communication field, 

biology field, medicine field and etc [8]-[10]. It is mainly 

because as the special behavior of nonlinear dynamical 

systems, Chaotic time series have the characteristics of 

extreme sensitivity to the initial value, wide power spectrum 

and noise like characteristic, which makes the chaotic time 

series’ characteristic have the feature of unpredictable and 

hidden. Now, synchronization and control of chaotic systems 

have become a hot topic, and then a variety of chaotic 

synchronization methods have been proposed, such as 

coupling synchronization method [1], variable structure 

synchronization method [2], adaptive synchronization 

method[3], linear and nonlinear feedback synchronization 

method [4]-[6], pulse synchronous method [7], [8], projective 

synchronization method [9], [10], fractional synchronization 

method [11] and the other methods [12]-[31]. Actually, most 

of the present methods which have been proposed focus on 

how to make the two chaotic systems asymptotically achieve 

synchronization, but the research on the optimization of 

chaotic synchronization rate is still relatively rare. However, 

in practical application, the exponential synchronization 

method with faster convergence rate has more advantage. One 

of the example is that when we modulate or hide the 

information into the chaotic signal at the transmitter in chaotic 

secure communication, the information only can be 

successfully recovered at the receiver which can also produce 

the same chaotic waveform. If the transmitter and receiver 

system cannot be synchronized at a fast speed at the moment, 

at the beginning of this period of time, the signal recovered at 

the receiver will have great distortion which will seriously 

affect the nice application of chaos in the secure 

communication. Thus, it can be seen, if the response system 

and the drive system can be synchronized at a fast speed, the 

method of chaotic exponential synchronization can be applied 

into the secure communication, which will have greater 

theoretical and practical significance. Therefore, the 

synchronization method at exponential rate has become a 

topic worthy of study. The main work at present that has been 

done in this area is in the following aspects: On the basis of 

certain assumptions, a synchronization method based on state 

observer is proposed by the thesis [14]. For a class of 

uncertain nonlinear systems, the paper [15] proposed a 

nonlinear feedback control method with good robustness; The 

paper [16] presented a new method of nonlinear feedback 

exponential stable synchronization based on the boundedness 

of chaotic system. 
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Based on existing research results, this paper’s main target 

is the convergence rate, and the global exponential stability of 

a class of nonlinear dynamical systems is studied. Under the 

condition that the system satisfies the global Lipschitz 

condition, on the basis of the stability theory, we designed a 

suitable nonlinear state feedback controller which can make 

the global exponential of the controlled system stable to the 

equilibrium point. The feasibility of the method is analyzed 

theoretically, and an algorithm is systematically given to 

configure the related parameters of the controller. At last, 

according to the example of the synchronization of two 

unified chaotic systems and its application in the secure 

communication, simulation results further show the 

effectiveness of the proposed method. 

2. Priliminaries 

Considering a nonlinear dynamical system with the 

following forms: 

( ) ( ) ( ( )),x t Ax t f x t= +ɺ  0(0) ,x x=         (1) 

We denote ( ) nx t R∈  as system state which is 

n-dimensional real column vector, where n nA R ×∈  is 

constant system matrix, ( ( )) : n nf x t R R→  is a continuous 

nonlinear mapping which satisfies the following global 

Lipschitz condition, which is that for any two vectors 

, ,nx y R∈  there exists a normal number ξ  which can make 

the following established inequality hold 

( ) ( )f x f y x yξ− ≤ − ,         (2) 

a vector’s Euclidean norm is indicated by ⋅ . Be aware of 

(0) 0f = , that is, ( ) 0x t =  is the equilibrium point of the 

system (1). 

Assuming controlled system is 

( ) ( ) ( ( )) ( ( )),x t Ax t Bf x t U x t= + +ɺ  0(0) ,x x=    (3) 

Where ( ( ))U x t  is the external control input. The goal of 

this paper is to use the system state variable ( )x t  as input by 

designing a suitable controller, so that the state vector ( )x t  

tends to zero at an exponential rate as time goes to infinity, that 

is 

( ) (0) exp( ),e t e tβ≤ −
         

 (4) 

where 0β > . (3) should be treated as an error system, When 

the synchronization of two chaotic systems are taken into 

consideration. It is necessary to introduce the following 

lemma before we come to our conclusion. 

Lemma 1 ([14]): If ( )V t  is continuous and its 

corresponding differential equation satisfies 

( ) ( , ( ))V t g t V t=ɺ ,                (5) 

whose solution is a unique. If for [0, ]ft t∈ , ( )V t′  is the 

solution of the system (5) and ( )V t′′  is a solution of 

inequality ( ) ( ( ), )V t g V t t≤ɺ , their initial values meet the 

condition that (0) (0)V V′′ ′≤ , and then for [0, ]ft t∈ , we 

have the following inequality holds 

( ) ( )V t V t′′ ′≤ .                 (6) 

Lemma 2 ([16]): the differential equation 

( ) ( ) exp( ),V t V t tλ ε α= − + −ɺ             (7) 

where , , 0λ ε α > , the solution of (7) has the following form 

( )
(0)exp( ) exp( ), ,

( ) exp( ) exp( )
(0)exp( ) , .

V t t t

V t t t
V t

λ ε λ λ α
ε α λ

λ λ α
λ α

− + − =
= − − −

− + ≠ −

  (8) 

and ( )V t  has the global exponential stability, that is 

lim ( ) 0
t

V t
→∞

= . 

Based on lemma 1 and lemma 2, we can obtain a theorem 

with exponential stability as follow. 

Theorem 1 ([16]). For a given continuous nonlinear system 

( ) ( , ( ))x t f t x t=ɺ ,                  (9) 

Where ( ) nx t R∈ . If there exists a Lyapunov function 

( ( ), )V x t t
 

which has the following properties, for arbitrary 

( ), ( )
n

t x t R R
+∈ × , we have the following inequalities hold. 

2 22 2
1 2( ) ( ( ), ) ( )x t V x t t x tλ λ≤ ≤ ,        (10) 

3( ( )) ( ( )) exp( )V x t V x t tλ ε α≤ − + −ɺ ,       (11) 

where 1 2 3, ,λ λ λ , ε  and α  are normal numbers, the system 

(9) has the global exponential stability and satisfies the 

following inequalities: 

( )

1
2 2

2
3 3 32

1 1

1
2 2

2
3 3 32

1 1 3

(0) exp( ) exp( ) , ,

( )

(0) exp( ) exp( ) exp( ) , .
( )

t
x t t

x t

x t t t

λ ελ λ λ α
λ λ

λ ελ α λ λ α
λ λ λ α


   
 − + − =  
    ≤ 
   − + − − − ≠  −  

 (12) 

3. The Design of Controller 

Based on the above conclusions, we design a nonlinear state 

feedback controller with the following form. 

2 T
( ) ( ) ( )

( ( )) ( ) ,
( ) ( ) exp( )

C x t x t Px t
U x t BKx t

C x t Px t tε α
= − −

+ −
  (13) 

Where 1nB R ×∈ , 1 nK R ×∈ , 0,ε > 0α > , 0C >  are the 
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control parameters to be designed. 

Theorem 2. For continuous system (1), under the condition 

of global Lipschitz, if there exists a constant matrix 1nB R ×∈  

which has the follow property 
1[ , , ..., ]nRank A AB A B n− = , 

there also exists a positive definite matrix n nP R ×∈  and a 

matrix 1 nK R ×∈  make 
T( ) ( )A BK P P A BK− + −  become a 

negative definite matrix, and then under the action of the 

controller (13), the state variables of the system (1) are 

globally exponentially stable at the origin. 

Proof of theorem 1: The Lyapunov function is constructed 

as follows: 

T1
( ( )) ( ) ( ),

2
V e t x t Px t=             (14) 

where P  is a positive definite matrix. Let

1 min

1
( )

2
Pλ λ= , 2 max

1
( )

2
Pλ λ= , then ( ( ))V e t  

should satisfy the following inequality 

2 22 2
1 2( ) ( ( )) ( )x t V x t x tλ λ≤ ≤ .      (15) 

Along the system (1), the form of the derivative of ( ( ))V x t

about time t  is as follows 

( ) ( )

( ) ( ) ( )( )

T T

T T

TT T T

2 T T
T T

2 T
T

1
( ( )) ( ) ( ) ( ) ( )

2

1
( ( )) ( ) ( ( )) ( )

2

1 1
( ( )) ( ( ))

2 2

1
( )

2 exp( )

1 .
( )

2 exp( )

V x t x t Px t x t Px t

Ax f x t U t Px x P Ax f x t U t

x A P PA x f x t Px x P f x t

x xx P
x BK Px

x Px t

x x Px
x P BK x

x Px t

ξ
ξ ε α

ξ
ξ ε α

 = + 

 = + + + + +  

= + + +

 
+ − −  + − 


+ − −

+ −

ɺ ɺ ɺ

( ) ( ) ( )( )
( )

TT T T

2 22
T T

2 22
T

1 1
( ( )) ( ( ))

2 2

1
( ) ( )

2 exp( )

1 1

2 2 exp( )

x A P PA x f x t Px x P f x t

x Px
x BK P P BK x

x Px t

x Px
x Qx x Px x Px

x Px t

ξ
ξ ε α

ξ
ξ ξ

ξ ε α


  
 

= + + +

+ − + − −
+ −

≤ − + + −
+ −

 

2 22
T

T

2

min

exp( )

exp( )

exp( )

( ) exp( ),

x Px
x Qx x Px

x Px t

x Px t
e Qe

x Px t

Q x t

ξ
ξ

ξ ε α

ξ ε α
ξ ε α

λ ε α

≤ − + −
+ −

× −
≤ − +

+ −

≤ − + −

 

where 
T1

( ) ( )
2

Q A BK P P A BK = − − + −  . According to 

(15), we have 

min

2
2

( )
( ( )) ( ( )) exp( )

Q
V x t V x t t

λ ε α
λ

≤ − + −ɺ .    (16) 

Let min

2
2

( )Qλλ
λ

= , we can obtain the inequality 

( ( )) ( ( )) exp( )V e t V e t tλ ε α≤ − + −ɺ . According to theorem 1, 

we can draw the following inequalities hold. 

( )

1

2 2
2

2
1 1

1
2 2

2

2
1 1

(0) exp( ) exp( ) , ,

( )

(0) exp( ) exp( ) exp( ) , .
( )

t
x t t

x t

x t t t

λ ελ λ λ α
λ λ

λ ελ α λ λ α
λ λ λ α


   
 − + − =  
    ≤ 
   − + − − − ≠  −  

 

In the process of parameter design of control input ( )U t , 

the most important step is how to find the matrices , ,B K P  

to meet the requirement. In the light of theorem 2, The choice 

of matrix , ,B K P  should make the matrix 

T( ) ( )A BK P P A BK− + −  became a negative definite matrix. 

In order to achieve this goal, we need to use the following 

lemma. 

Lemma 3 ([16]): Suppose the matrix A  and B  satisfy the 

controllable conditions, that is 
1[ , , ..., ]nRank A AB A B n− = , 

the matrix n nP R ×∈  is positive definite against matrix. If 

there exist positive definite matrices n nD R ×∈  and 
m mR R ×∈ , which satisfy the following Ricatti equation 

T 1 T 0D A P PA PBR B P−− − − + = . Define 1 TK R B P−= ,all 

the eigenvalues of A BK−  have the negative real part, that is 

to say, ( )A BK−  is negative definite matrix. 

Thus, we can give a systematic method to design the 

controller parameters. Let's first select a constant matrix 

1nB R ×∈ , which makes 1[ , , ..., ]nRank A AB A B n− = ; 

Secondly, we need to choose positive definite constant 

matrices n nC R ×∈  and ( )m mR R m n×∈ ≤ ;Then, we can 

find a positive definite matrix P  by solving the Ricatti 

equation T 1 T 0D A P PA PBR B P−− − − + = ; After that, let's 

calculate 1 TK R B P−=  and T1
( ) ( )

2
Q A BK P P A BK = − − + −  . 

Finally, we choose the appropriate normal numbers , ,ξ α ε . 

The control parameters designed by the above steps can meet 

the requirements. 

4. Numerical Simulation 

To demonstrate the correctness and practicability of the 

proposed method, the simulation design is carried out 

according to the synchronization scheme of the unified chaotic 

system. The mathematic model of the unified chaotic system 

1 2 1

2 1 1 3 2

3 1 2 3

( ) (25 10)( ( ) ( )),

( ) (28 35 ) ( ) ( ) ( ) (29 1) ( ),

( ) ( ) ( ) (8 ) 3 ( ),

x t a x t x t

x t a x t x t x t a x t

x t x t x t a x t

= + −
 = − − + −
 = − +

ɺ

ɺ

ɺ

 (17) 
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where system parameter [0, 1]a ∈ , the unified chaotic 

system is of global chaos characteristic in this range. When 

[0, 0.8)a ∈ ,the system is a descriptor Lorenz system. When 

(0.8,1]a ∈ , the system is a descriptor Chen system. And 

when 0.8a = , the unified chaotic system belongs to Lü 

system. When 0.56a = , the system is belong to descriptor 

Lorenz system characterized as chaos. Its chaotic attractors 

are shown in figure 1.(a)-(c). 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) the phase diagram of chaotic attractors in plane x1-x2, (b) the 

phase diagram of chaotic attractors in plane x1-x3,(c) the phase diagram of 

chaotic attractors in plane x2-x3 

Think of system (16) as the drive system, and the 

homogeneous response system is the following control system 

1 2 1 1

2 1 1 3 2 2

3 1 2 3 3

( ) (25 10)( ( ) ( )) ( ),

( ) (28 35 ) ( ) ( ) ( ) (29 1) ( ) ( ),

( ) ( ) ( ) (8 ) 3 ( ) ( ),

x t a x t x t U t

x t a x t x t x t a x t U t

x t x t x t a x t U t

 = + − +
 = − − + − +
 = − + +

ɺɶ ɶ ɶ

ɺɶ ɶ ɶ ɶ ɶ

ɺɶ ɶ ɶ ɶ

 (18) 

Here we divide (17) and (18) into two parts: one is linear 

part and the other is non-linear parts, the coefficient matrix 

and the nonlinear term of the liner part as follows 

1 3

1 2

1 3

1 2

25 10 25 10 0

28 35 29 1 0 ,

0 0 (8 ) 3

0

( ) ( ) ( ) ,

( ) ( )

0

( ( )) ( ) ( ) .

( ) ( )

a a

A a a

a

f x x t x t

x t x t

f x t x t x t

x t x t

− − + 
 = − − 
 − + 

 
 = − 
 
 

 
 = − 
 
 

ɶ ɶ ɶ

ɶ ɶ

      (19) 

Then, selecting 0.56, 60, 2.5, 1,a ξ α ε= = = =
T[0, 1,1] , {1, 1,1}, 5B D diag R= = = , according to the above 

method, we can obtain the following matrices 

7.3273 38.1410 0.0584

38.1410 199.0274 0.3050 ,

0.0584 0.3050 0.1746

P

− 
 = − 
 − − 

3

0.1455 0.7568 0.0005

10 0.7568 3.9496 0.0026 ,

0.0005 0.0026 0.0005

Q

− − 
 = − − 
 − 

 

[ ]7.6165 39.7445 0.0261K = − , 

where 
1 min

1
( ) 0.0935

2
Pλ λ= = , 

2 max

1
( ) 10.1572

2
Pλ λ= = ,

min

max

( )
0.0024

( )

Q

P

λλ
λ

= = . Because λ α≠ , the error vector ( )e t  

satisfies 

( )

1
2 2

2
32

1 1

( ) (0) exp( ) exp( ) exp( )
( )

e t e t t t
λ ελ α λ
λ λ λ α

  
 ≤ − + − − − 
 −  

 (20) 

Take the above parameters into 
T

1 2 3( ) [ ( ), ( ), ( )]U t U t U t U t= -the controller of Theorem 2, and 

define the synchronization error 3 2

1
( ) ( ( ) ( ))i ii

E t x t x t
=

= −∑ ɶ  

whose time-domain plot shows in 2(a); It is difficult to 

estimate the performance of synchronization by directly 

observe how the synchronization error changes over time, we 

take log of ( )E t  in order to inspect the performance of 

exponential synchronization more effectively, the result is 

shown in Figure 2.(b). It shows that the two chaotic systems 

achieve synchronization in a short time. 
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(a) 

 
(b) 

Figure 2. Synchronization Error, (a) time-domain figure of ( )E t ; (b) 

time-domain figure of 10log ( )E t  

Bellow we apply this exponential synchronization method 

to chaos secure communication. The chaotic masking secure 

communication is an earlier studied secure communication 

technique. In the transmitter, there is a chaotic systems 

superimposing the transmitted signals on output chaotic 

signals, and the synthesized signals are transmitted via a 

transmission channel. In the receiver, there is a chaotic system 

equivalent to the transmitter, which is driven by the received 

signals, so as to achieve the synchronization between the local 

chaotic system and the receiver chaotic system, then subtract 

the received synthesized signals by the reconstructed signals 

to get the information transmitted. We denote the information 

signals as ( )m t .Here we firstly normalize ( )m t  in order to 

prevent the impact of the oversize amplitude of ( )m t  on the 

chaotic signals, that is ( ) ( )m t m t M′ = . Superimposing 

tighter ( )m t  and three chaotic signals, we have 

1 2 3( ) ( ) ( ) ( ) ( )s t m t x t x t x t′= + + + ,then transmit ( )s t  in the 

channel. The response system synchronized with the drive 

system in the receiver ensures that useful information 

transmitted can be acquired. The decrypted signal in the 

receivers is 1 1 2 3( ) ( ( ) ( ) ( ) ( ))m t M s t x t x t x t= − − −ɶ ɶ ɶ . In the 

simulation, we select ( ) 10sin( )m t tπ=  to represent the 

original signal, and the amplitude 10M = ; The transmission 

signal ( )s t  as shown in Figure 3.(b); The decrypted signal as 

shown in Figure 3.(c); The error signal 1( ) ( )m t m t−  as 

shown in Figure 3.(d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) the original signal; (b) the transmission signal; (c) the 

decrypted signal; (d) the error signal. 
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The simulations show that the useful signal performs prefer 

masking property under the mark of chaotic signal. In the 

receiver, the useful signal recovering can be achieved less than 

0.5s, it contributes to the exponential synchronization method, 

which further demonstrates the efficacy of exponential 

synchronization method. Hence, it can be effectively applied 

to signal transmission for secure communication with better 

practicability and higher security. 

5. Conclusion 

This paper researches a method of exponential 

synchronization for chaotic systems. Numerical simulation 

shows that the proposed method is easily implemented in 

practice with a higher synchronous speed and confidentiality. 

Hence, the method possesses evident practicability and 

application value in secure communications. 
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