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Abstract: In this paper, we have solved the Schrödinger wave equation with Yukawa plus ring-shaped potential model using 

powerful Nikiforov-Uvarov method and obtained the energy eigenvalues and corresponding wave functions in terms of Jacobi 

and Laguerre polynomials for the angular and radial part respectively. We have also presented the effect of angle dependent 

solution on radial solutions and also applied our results to obtain numerical values for some selected diatomic molecules which 

suggest usefulness to other physical systems. We also studied the behavior of our potential graphically for H2 diatomic 

molecule. 

Keywords: Noncentral Potential, Diatomic Molecules, Nikiforov-Uvarov Method, Yukawa Potential, Ring-Shaped Potential 

 

1. Introduction 

Bound state solutions of the Schrodinger equation with 

physically significant potentials play a major role in 

quantum mechanics [1, 2]. One of the important tasks in 

theoretical physics is to obtain exact solution of the 

physical systems for special potentials (central and 

noncentral) of interest and some of these potentials are of 

significant applications in many fields of studies. 

Noncentral potential in particular has been studied in 

various fields of nuclear physics and quantum chemistry 

which could be used for the interaction between deformed 

pair of nuclei and ring shaped molecules like benzenes [1-

5]. Yukawa potential is one of the short ranged potentials 

that have been studied in physics, they have Coulombic 

behavior for small r  and are exponentially damped for 

large r , and they have limited number of bound states 

characterized by the presence of the screening parameter α  

[6-10]. This model receives great attention for it plays an 

important role in high energy and particle physics, atomic 

physics, chemical physics, gravitational plasma physics and 

solid state physics. In solid state physics and atomic 

physics, its named the Thomas-Fermi or screened Coulomb 

potential while in plasma physics it is known as the Debye-

Hückel potential [11,12]. 

There has been continuous interest in the solutions of 

Schrödinger equation, Klein-Gordon and Dirac equations 

for some noncentral potential. These equations are solved 

by means of different methods for exactly and 

approximate solvable potentials. Antia et al solved 

approximately the Schrödinger equation with Hulthen-

Yukawa plus angle dependent potential using Nikiforov-

Uvarov (NU) method [13]. Yasuk et al presented an 

alternative and simple method for the exact solution of the 

Klein-Gordon equation in the presence of noncental equal 

scalar and vector potential by using NU method [14]. 

Hamzavi and Rajabi solved exactly the Dirac Equation 

with Coulomb plus a novel angel-dependent potential 

using NU method [15]. They also applied the Schrodinger 

wave equation to solve the novel angle dependent 

potential using NU method [16]. 

The novel angle dependent potential as introduced by 
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Zhang and Huang Fu is [17]. 
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They solved the Dirac equation for oscillatory potential 

under a pseudospin symmetry unit. Therefore the motivation 

of this present work is to solve the Schrödinger equation with 

Yukawa plus ring-shaped potential model given as 
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By Taylor’s series expansion 
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Truncating the terms our potential of interest becomes  
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where 0V  are the potential depths, α  is the screening 

parameter, µ  is the reduced mass and ℏ  is the reduced 

plank’s constant , , andγ β η  are arbitrary constants. 

We shall obtain the solution of the radial and angle 

dependent part, present the effect of angle dependent solution 

on radial solutions and apply our results to some diatomic 

molecules such as H2, CO, NO, N2 and Ar2. 

 

 

2. The Generalized Parametric 

Nikiforov-Uvarov (NU) Method 

The NU method was presented by Nikiforov and Uvarov 

[18] and has been employed to solve second order differential 

equations such as the Schrödinger wave equation (SWE), 

Klein-Gordon equation (KGE), Dirac equation (DE) etc. The 

SWE 

( ) [ ] ( )" ( ) 0r E V r rψ ψ+ − =                           (5) 

can be solved by transforming it into a hypergeometric type 

equation through using the transformation, ( )s s r=  and its 

resulting equation is expressed as  
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where ( )sσ  and ( )sσɶ  must be polynomials of at most 

second degree and ( )sτ  is a polynomial with at most first 

degree and ( )sψ  is a function of the hypergeometric type. 

The parametric generalization of the NU method is given 

by the generalized hypergeometirc-type equation as [19] 
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Equation (7) is solved by comparing it with Eq. (6) and the 

following polynomials are obtained: 

( ) 2
1 2 3 1 2 3( ) , ( ) (1 ), ( ) .s c c s s s c s s s sτ σ σ ξ ξ ξ= − = − = − + −ɶ ɶ   (8) 

According to the NU method, the energy eigenvalues 

equation and eigen functions respectively satisfy the 

following sets of equation 
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and 
( ) ( ),

nP s
α β

 is the orthogonal Jacobi polynomial. 

In some problem 3 0c = . For this type of problems we 

have 
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And 
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And the solution given in Eq(10) becomes [20] 
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where ( )nL sα
 is the Laguerre polynomial. 

3. Factorization Method 

In spherical coordinate the Schrödinger equation with 

noncentral potential of Eq. (4) can be written as follows [21] 
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The total wave function in Eq. (17) can be defined as 
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r
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and by decomposing the spherical wave function in Eq. 

(17) using Eq. (18) the following equations are obtained:  
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Substituting ( ), ( ) ( )Y θ φ θ φ= Θ Φ  into Eq. (20) yields: 
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where ( 1)l lλ = +  and 2m  are the separation constants. The 

solution of Eq.(22) is well known [22]. Equations (19) and 

(21) are the radial and angular parts of Schrödinger equation 

respectively which are subject for discussion in the preceding 

section.  

4. Solutions of the Radial Schrödinger 

Equation 

For eigenvalues and corresponding eigenfunctions of the 

radial part of the Schrödinger equation from Eq.(19) we 

have; 
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Using the following dimensionless quantities 
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we have 
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Comparing Eq.(25) with Eq.(7) and making use of 

Eqs.(11-13), the following parameters are obtained: 
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Substituting Eqs.(26-30) into Eq.(9) and solving the 

resulting equation explicitly, the energy eigenvalues for the 

radial part of the Schrödinger equation is obtained as  
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We can immediately obtain the energy eigenvalue of 

Eq.(31) from hydrogen problem but here we have tried the 

NU method to show the simplicity of this method. And the 

corresponding radial wave function is obtained as: 
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where 
1

4
ν λ= +  and nN  is a normalization constant. 
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5. Solutions of the Polar (Angular) Part 

The eigenvalues and the eigenfunctions of the polar part of the Schrödinger equation in this case can be obtained by making 

use of Eq.(21) 
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Using the transformation, 
2cosq θ= , Eq. (33) reduces to  
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Comparing Eq.(34) with Eq.(7), the following parameters are obtained 
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Substituting Eqs. (35-40) into Eq. (9) gives the relation for λ  as  
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where ( )1 .l lλ = +  

The corresponding wave function of the angle dependent part is obtained as 
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Equation (42) can further be written as 
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where mN  is a normalization constant. 

6. Effect of Angle Dependent Part on 

Radial Solutions 

The total energy of the Yukawa plus ring-shaped potential 

model is obtained by considering the effect of the angle 

dependent part on the radial part. Substituting Eq.(41) into 

Eq.(31) yields the energy spectra for this system as 
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Finally, the total wave function for the system can be 

written as  
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where nmN  is the normalization constant. 

7. Application to Diatomic Molecules 

Diatomic molecular potential are very important to 

describe the intramolecular and intermolecular interactions 

and atomic pair correlations in quantum mechanics [23,24]. 

We shall apply the exact solution of Schrödinger equation for 

some selected diatomic molecules for the s-wave by setting 

0 e eV D r=  in Eq.(44). 
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where eD  is the dissociation energy (interaction energy 

between two atoms in a molecular system) and er  is the 

distance of separation between the atoms. Setting 

1γ β η= = =  and making use of Table 1 we obtained 

numerical values for our total energy eigenvalues. 

Table 1. Potential parameters of some selected diatomic molecules [24]. 

Diatomic 

Molecules 
( )eD eV  

 
 
 
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er A  
 
 
 
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o

Aµ  

H2 4.7446 0.7416 0.5039 
CO 10.845 1.1282 6.8606 

NO 8.0437 1.1508 7.4684 

N2 11.938 1.0940 7.0034 
Ar2 1.6720 2.5300 53.934 

Table 2. Energy eigenvalue for 0.01 0.05α≤ ≤ .. 
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Figure 1. Variation of ( ),eV r θ  with θ for H2 diatomic molecule. 

8. Conclusion 

The exact bound state solution of Schrödinger wave 

equation with Yukawa plus ring-shaped potential model 

using Nikiforov-Uvarov method is obtained and the 

corresponding wave functions are expressed in terms of 

Jacobi 
( ) ( ),

nP s
α β

 and Leguerre polynomial ( )nL sα
 for 

angular and radial solutions respectively. These results are 

used to study the interactions of the noncentral potential for 

diatomic molecules. The Yukawa potential is often used to 

compute bound state normalization and energy levels of 

neutral atoms while the ring-shaped potentials are used for 

the interaction between deformed pair of nuclei and ring 

shaped molecules. The results obtained would have many 

applications in chemical and molecular physics and the 

recently reported result of neutron-proton pair in heavy 

nuclei using perturbation theory [25]. Numerical data for 

some selected diatomic molecules are presented in Table 2 

and Variation of the potential is presented for H2 diatomic 

molecule in Figure 1. Figure 1 shows that the potential for H2 

diatomic molecules decreases downward with increase in θ  

and this suggest a good condition for the bound state of this 
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system. Also, from the computed results in Table 2, the 

energy eigenvalues of the selected diatomic molecules 

decrease with increase in the screening parameter ( )α . 

Under limiting cases, our results could be applicable to 

particles in other physical systems such as Klein-Gordon 

particles, Dirac particles etc. 
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