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Abstract: Constrained switching of switched nonlinear systems consists of many classes of switching signals with markedly 

different features. One of the most important ones is the average dwell time (ADT) switching. For switched systems, it is a 

well-known result that a switched nonlinear system is globally uniformly asymptotically stable under arbitrary switching 

sequence if the ADT satisfies the lower bound defined by a real constant value ( ln µ α ). In this note, it will be shown that this 

ADT condition is also necessary. 
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1. Introduction 

The theory of switched systems has matured into an 

important field of research. Its development has been 

motivated by the fact that many dynamical systems can be 

represented by a series of subsystems or modes, scheduled by 

switches among these modes. Switched systems can be 

classified into stated-controlled switched systems and 

time-controlled switched systems. The former refers to those 

systems where switch is triggered by system states satisfying 

certain prescribed conditions (guard conditions), while the 

latter implies that the system is switched according to a time 

sequence. For both classes of switched systems, abounding 

examples exist in biological and engineering systems. 

For dynamical systems, stability is an important issue for 

investigation of the time-evolutionary properties. One of the 

important problems concerns the theory of stability under 

arbitrary switching, namely, the switched system retains 

stability for any switching signal. This arbitrary switching 

stability is important due to the fact that many engineering 

systems are required to possess such a property. Indeed, for 

systems experiencing frequent switches, arbitrary switching 

stability is desirable or even compulsory. For example, for 

aircraft engines working over a large flight envelope, their 

control systems need to be switched among a variety of 

controllers. It is thus desirable to have an arbitrary switching 

stability property, although the controllers often experience 

switches over a (prescribed) sequence of acceleration and 

deceleration schedules [1]. In fact, some unfortunate 

switching still poses threats to deterioration of aircraft engine 

performance [2]. For electric power grid, however, stability 

should be retained under any type of switching signals as well 

as for any switching sequence of signals. Thus arbitrary 

switching stability must be kept as an a priory requirement for 

safe and reliable operation of power systems. 

Consequently, arbitrary switching stability is one of the 

important topics in the field of switched nonlinear systems. 

Many fundamentally important results have been obtained 

during the past decades [3-7]. To guarantee stability under 

arbitrary switching, the common Lyapunov function method 

plays an important role. This is because the existence of a 
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common Lyapunov function implies the global uniform 

asymptotic stability (GUAS) of the switched system for any 

switching sequence. Indeed, the importance of the existence of 

a common Lyapunov function is actually consolidated by a 

converse theorem, dictating that if a switched system is GUAS, 

then all the subsystems share a common Lyapunov function 

[8]. However it is also generally recognized that the common 

Lyapunov function approach to guarantee GUAS under 

arbitrary switching is very conservative and in many 

applications the average dwell time (ADT) switching is 

meaningful and flexible. The concept of ADT switching is 

introduced in [9] and means that the number of switches in a 

finite time interval is bounded and the average time between 

consecutive switching is not less than a constant. Thus ADT 

switching precludes randomly fast switching signals and 

avoids Zeno behaviour. 

2. Preliminary and Main Result 

For ADT switching of switched nonlinear systems, it is well 

known that a sufficient condition exists to guarantee the 

system is GUAS for any switching signal with ADT. In 

specific, it is stated as follows [9]: 

Theorem 1: Consider the switched system ( )t tx f xσ=ɺ *
, 

and let 0α > , 1µ >  be given constants. Suppose that there 

exist 1C  functions ( ) : N
tVσ ℜ → ℜ , ( )tσ ∈ ℓ , and two K∞  

functions 1k  and 2k  such that ( )t iσ∀ = , 

1 2( ) ( ) ( )t i t tk x V x k x≤ ≤ , ( ) ( )i t i tV x V xα≤ −ɺ , and 

furthermore ( , )i j∀ ∈ ×ℓ ℓ , i j≠ , ( ) ( )i t j tV x V xµ≤ ; then the 

system is GUAS for any switching signal with average dwell 

time 
* ln

a a

µτ τ
α

> = . 

Remark 1: This result shows that the ADT condition is 

sufficient for arbitrary switching stability of switched (linear 

and nonlinear) systems. In this note it will be shown that the 

ADT condition 
* ln

a a

µτ τ
α

> =  is also necessary for switched 

systems to be of arbitrary switching stability. To the best of the 

author’s knowledge, the necessity of the ADT condition has 

not been recognized. Showing the ADT condition is “if and 

only if” is thus an important progress in the stability theory of 

switched nonlinear systems.  

Given the above preliminary, the main result can now be 

stated below: 

Theorem 2: Consider the switched system ( )t tx f xσ=ɺ  and 

let 0α > , 1µ >  be given constants. Suppose that there exist 

1C  functions ( ) : N
tVσ ℜ → ℜ , ( )tσ ∈ ℓ , and two K∞  

functions 1k  and 2k  such that ( )t iσ∀ = , 

                                                             

* σ  is a piecewise constant function of time, called a switching signal, taking 

values in a finite set 1{ , }N=ℓ ⋯ . The other notation used in this note is fairly 

standard and will not be explicitly defined without confusion. 

1 2( ) ( ) ( )t i t tk x V x k x≤ ≤ , ( ) ( )i t i tV x V xα≤ −ɺ , and 

( , )i j∀ ∈ ×ℓ ℓ , i j≠ , ( ) ( )i t j tV x V xµ≤ ; then the system is 

GUAS for any switching signal if and only if the ADT satisfies 

the condition 
* ln

a a

µτ τ
α

> = . 

Proof: The sufficiency part is well-known and we show the 

necessity part below. We do this by first considering a 

generalized Lyapunov-like function, allowing the energy 

function to increase to a limited extent. From this general 

situation, we derive a “fast” switching rule in contrast to the 

usual “slow” switching rule as stated in Theorem 1. We then 

show that once the generalized Lyapunov-like functions 

become the 1C  functions ( ) : N
tVσ ℜ → ℜ  defined above, 

then the minimum dwell time among all the switching 

sequences is exactly the 
* ln
a

µτ
α

= . This implies that the ADT 

condition 
*

a aτ τ>  is in fact tight. That is, to guarantee the 

system to be GUAS for any switching signal, the ADT has to 

satisfy 
*

a aτ τ> , hence the necessity of the ADT condition is 

proved. The line of thought is delineated below. 

Step 1: Direct proof can be very difficult. Here an approach 

motivated by [10] and further exposed in [11] is adopted 

where a so-called week Lyapunov function is defined. This 

allows the Lyapunov-like function to rise to a limited extent 

and thus is very general. Now consider ( )t iσ =  and within 

the interval 1[ , )i it t + , denote the unions of scattered 

subintervals during which the week Lyapunov function is 

increasing and decreasing by 1( , )r i iT t t +  and 1( , )d i iT t t + , 

respectively. Hence 1 1 1[ , ) ( , ) ( , )i i r i i d i it t T t t T t t+ + += ∪ . Further 

use 1( )r i iT t t+ −  and 1( )d i iT t t+ −  to represent the length of 

1( , )r i iT t t +  and 1( , )d i iT t t +  correspondingly. Then we have 

the following result: 

Lemma 1: Consider the switched system ( )t tx f xσ=ɺ , and 

let 0α > , 0β >
 

and 1µ >  are prescribed constants. If 

there exist smooth functions ( ) : n
tVσ ℜ → ℜ  and two K∞  

functions 1k  and 2k  such that for each ( )t iσ = , the 

following conditions hold: 

1 2( ) ( ) ( )t i t tk x V x k x≤ ≤
 

1

1

( ) ( , )
( )

( ) ( , )

i t d i i
i t

i t r i i

V x over t T t t
V x

V x over t T t t

α
β

+

+

− ∈
≤  ∈

ɺ

 

( )( ) ( ) ( ) & ( ) ,i t j tV x V x t i t j i jµ σ σ −≤ ∀ = = ∈ × ≠ℓ ℓ

then the system is GUAS for any switching signal with ADT  

min( ) ln
a

Tα β µτ
β

+ −
< , min 1min ( ),d i iT T t t i−= − ∀ ∈ℓ  

Proof: For 1[ , )i it t t +∈ , we have: 
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where we have made the definition min 1min ( )d i i
l

T T t t −≡ − , 

that is the minimum decreasing interval over any switching 

sequence. Hence if min0 0
( , ) ln ( ) ( ) 0N t t T t tσ µ α β β − + + − <  , then 

( )i tV x  will be decreasing and the system will achieve GUAS. 

Now the condition min0 0
( , ) ln ( ) ( ) 0N t t T t tσ µ α β β − + + − <   is 

exactly the average dwell time defined by 0

0( , )

t t

N t t
α

σ
τ −

≡ . 

This completes the proof. 

The significance of Lemma 1 lies in the fact that the weak 

Lyapunov function is very general and incorporates the 

Lyapunov-like functions defined in Theorem 2. We now turn 

to the implication of the result in step 2. 

Step 2: It is seen that lemma 1 is a “fast switching” result, in 

contract to the usual “slow switching” that bounds the number 

of switches in a finite time interval. Fast switching result is 

desirable because a system will achieve arbitrary switching 

stability if the upper bound for fast switching is larger than the 

lower bound for slow switching. Now consider 0β = , that is, 

over any interval 1[ , )i it t +  the Lyapunov-like function ( )i tV x

is non-increasing, then lemma 1 tells that the only requirement 

for fast switching stability is the nominator 

min( ) ln 0Tα β µ+ − ≥ , that is: min

ln
T

µ
α

≥ . It can then 

deduce from the definition min 1min ( ),d i iT T t t −≡ −  i∀ ∈ ℓ  

that the minimum decreasing duration over any interval 

should satisfy 
*

min

ln
T

µτ
α

≥ = . This is equivalently to say 

that the minimum dwell time over any switching sequence 

should be at least 
* ln µτ

α
= . 

Step 3: Now the case 0β =  is exactly the Lyapunov-like 

function defined in Theorem 2. To recap, the sufficiency part 

says that the system is GUAS for any switching signal if the 

ADT satisfies the condition 
* ln

a a

µτ τ
α

> = ; the result from 

step 2 shows that to guarantee GUAS, the minimum dwell 

time over any switching sequence should be at least 

* ln µτ
α

= . That is the estimation 
* ln

a a

µτ τ
α

> =  is actually 

tight, demonstrating the necessity of the ADT condition. □ 

Remark 2: The proof given here is not very straightforward 

but the approach is illuminating in that it provides insight into 

the nature of switching systems, e.g. in the proof of Theorem 2, 

we obtain min lnT µ α≥ , which implies that to compensate 

the “jump” ( ) ( )i t j tV x V xµ≤  ( 1µ > ), the minimum dwell 

time over all switching signals should be at least ln µ α ; 

while 1µ =  reduces to min 0T ≥ , which is obviously true as 

this is simply the case of usual multiple Lyapunov functions 

with switch matching inequality. 

Remark 3: The result in lemma 1 can be reformulated in a 

slow switching fashion resulting in max( ) ln
a

Tα β µτ
α

+ +
> , 

max 1max ( )r i i
l

T T t t −= − , 0β =
 

implies no increasing in the 

Lyapunov-like function and hence max 0T = . The ADT 

condition then becomes 
ln

a

µτ
α

> , the usual ADT condition. 

Remark 4: Consequently, switched systems can actually be 

characterized by slow switching and fast switching. This 

implies that two mechanisms exist for stability of constrained 

switched systems. This provides a new perspective towards an 

important issue in natural systems, namely how a system can 

maintain long-term stability while experiencing short-term 

instability. 

3. Discussions 

The sufficiency of the ADT condition has been proved to be 

necessary as well. However, it must be warned that such a 

necessary and sufficient condition must be explained within 

the background of constrained switching. That is, the 

switching signals are required to possess a dwell time property. 

And in this sense, arbitrary switching stability does not imply 

that the switching signals are of any type in this note but 

constrained within dwell time signals. Even with this 

restriction, the result presented here is of significance. 

Meanwhile, as the procedures of the proof involves in 

deploying Lyapunov-like functions, it is expected that the 

results are applicable to other systems such as linear and 

nonlinear switched descriptor systems [12-15], with possible 

development into fractional order switched systems [16, 17] 

etc. 

While it is claimed that the results obtained in this note are 

of theoretical importance, they also have significance for 

practical engineering systems. For example, many systems are 

controlled by digital controllers, thus it is desirable to 

implement control signals as dwell time switching ones. And 

once the control signals satisfy the corresponding dwell time 

condition dictated in Theorem 2, the closed loop system is 

guaranteed to be arbitrary switching stability. 

4. Conclusion 

Arbitrary switching stability under ADT is an important 

class of switching signals for switched nonlinear systems. In 

this note, it has been shown that the long-been-recognized 

sufficient condition is also necessary. This important result 
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sheds new light on the nature of switched nonlinear systems 

and is worth the attention by the community. 
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