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Abstract: Firstly, it was studied to the Fokker-Planck-Kolmogorov (FPK) equations for nonlinear stochastic dynamic system. 

Secondly, it was discussed to the third-order TVD Runge-Kutta difference scheme totime for differitial equations and the fifth-order 

WENO scheme for differitial operators. And combined he third-order TVD Runge-Kutta difference scheme with the fifth-order 

WENO scheme, obtained the numerical solution for FPK equations using the TVD Runge-Kutta WENO scheme. Finally, the 

numerical solution was compared with the analytic solution for FPK equations. The numerical method is shown to give accurate 

results and overcomes the difficulties of other methods, such as: the big value of probability density function at tail etc. 
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1. Introduction 

The FPK equation was first proposed by Fokker and Planck 

in 20 Century, and was applied to the study of quantum 

physics. At the beginning of 1930s it is generalizated and 

abstracted by Kolmogorov. Soon, it is applied to the study of 

general dynamic systems by Andronov et al. In the 50's 

Stratonovich applied it to the study of electronic engineering 

problems. At the end of the 50's Chuang and Kazda applied it 

to the study of nonlinear control systems. In the early 60's, it is 

applied to the study of nonlinear random vibration problems 

by Ariaratnam, Lyon, Smith, Caughey and Dienes, Crandall 

and so on. 

The response and reliability of the system can be 

qualitatively analyzed by using the transition probability 

density of the system. However, at present, only some special 

nonlinear stochastic dynamical systems can get the exact 

solution of the FPK equation [1-3]. Based on this, many 

scholars dedicated to the study on the numerical solution of 

FPK equation, which represents the main finite element 

method and finite difference method, the path integral method, 

equivalent linearization method, Gaussian closure method, 

perturbation method, the gram Charlier expansion method, 

equivalent nonlinear system method, stochastic averaging 

method. However, these methods have their shortcoming: the 

Calculation quantity of the finite element method is usually 

very large, and the tail probability density is not accurate; 

equivalent linearization method and Gauss's method is not 

applicable to strongly nonlinear [4-6] systems or systems with 

random parametric excitation, for the steady-state probability 

density of the system response is often non Gauss type; 

perturbation method is only applicable to weakly nonlinear 

systems; the Gram-Charlier expansion method may lead to the 

case that the probability density is negative; equivalent 

nonlinear system method requires that the properties of the 

two nonlinear systems are very close; the stochastic averaging 

method is only applicable to the case of weak damping and 

weak excitation. 

And weighted essentially non oscillatory (WENO) method 

is in recent years popular a kind of high resolution numerical 

method, for solving convection dominated convection 

diffusion equation, especially for those of hyperbolic 

conservation laws. WENO method is structured by the 

weighted idea based on the ENO method to solve problem of 
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the shock, sparse and contact discontinuities and other 

complex structure of the fluid problem. The performance of 

WENO method is more stable and the convergence is better. It 

can guarantee that the accuracy of the smooth region of the 

solution is higher, and the discontinuous in the solution 

maintain the steep discontinuity and the nature of the 

oscillation. WENO scheme is initially proposed and 

constructed a third order finite volume WENO scheme in 

1994 by Liu, Osher and Chan, which uses the convex 

combination of all of the candidate templates and is different 

in the eno format single template selection, and systematically 

discusses the WENO method of construction process and 

theoretical analysis. Then, the framework is given in which 

can construct arbitrary precision finite difference WENO 

scheme in the multidimensional space, in 1996, Jiang and Shu, 

and in which a fifth order accuracy WENO scheme was 

designed, and the smooth factor and the basic structure of 

nonlinear weight. So far, five order WENO scheme is the most 

widely used, which is the standard formats for solving WENO 

reconstruction process of the hyperbolic conservation laws 

equation. 

In this paper, a new TVD Runge Kutta WENO type 

difference method is proposed for based the above problems, 

combined with the third order TVD Runge Kutta method, 

better than other method for solving FPK equation, and can 

obtained more accurately the probability density function. 

2. The FPK Equation of the Nonlinear 

Dynamic System with Random 

Excitation 

For nonlinear stochastic dynamical systems, the 

corresponding FPK equations have the following form: 

( ) ( )i ij

i i j

p
a p b p

t x x x

∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
= − += − += − += − +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂ ∂

21

2
        (1) 

FPK equation (1) is a variable coefficient parabolic partial 

differential equation, which describes the evolution or the 

flow of the transition probability density of the diffusion 

process, in which ,i ija b  is the drift and diffusion coefficient 

Correspondingly. 

When ,i ija b  not contains time t  obviously, the FPK 

equation (1) can be transferred to: 

( ) ( )i ij

i i j

a p b p
x x x

∂ ∂∂ ∂∂ ∂∂ ∂
= − += − += − += − +

∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂

21
0

2
          (2) 

FPK equation (2) is a partial differential equation with 

variable coefficients, which is often referred to as a simplified 

or stationary FPK equation, whose solution will be stationary 

probability density ( )p x . To uniquely determine the solution 

of the FPK equation (1), the initial and boundary conditions 

are required. 

In this paper, we use the following initial conditions: 

( , , ) ( ),p x t x t x x t tδ= − == − == − == − =0 0 0 0           (3) 

which expressed that the system is in the initial state x
0

with 

probability 1 at the moment t t==== 0
. 

Infinite boundary condition: 

lim ( , , )
jx

p x t x t
→ ±∞→ ±∞→ ±∞→ ±∞

====0 0 0            (4) 

Or, it must at least to close to zero by ( )
j

x
α

α
−−−−

>>>> 1 . 

In the random vibration theory, the FPK equation (1) and (2) 

are commonly used to predict the response of nonlinear 

stochastic dynamic systems. Therefore, the accuracy of the 

solution of the FPK equation plays an important role in the 

reliability analysis. 

3. The Finite Difference Method for FPK 

Equation 

3.1. Runge-Kutta TVD Scheme 

Let ( )
x

du
f u

dt
− =− =− =− = 0  is a hyperbolic partial differential 

equation in a general form, and the semi discrete scheme about 

space is: 

( )
du

L u
dt

====                      (5) 

In which ( )L u is the approximation of ( )
x

f u−−−− . For the 

semi discrete form equation (5), the standard Runge-Kutta 

time discretization achieves the stability of the format basing 

on the linear stability conditions to, here the CFL can take a 

larger value. But for the nonlinear equations, CFL must be 

very small in order to ensure the stability of the scheme. Due 

to coupling the high order spatial discretization and low order 

Runge Kutta time discrete, CFL must greatly lower than the 

requirements of the linear stability, in order to guarantee the 

discrete scheme with high order accuracy and non oscillatory. 

In this paper, we use the three order Runge-Kutta time 

discretization scheme with TVD properties [7]: 

( ) ( )n nu u tL u∆= += += += +1
 

( ) ( ) ( )( )nu u u tL u∆= + += + += + += + +2 1 13 1 1

4 4 4
 

( ) ( )( )n nu u u tL u∆++++ = + += + += + += + +1 2 21 2 2

3 3 3
 

Where 
n

u  is the conservation of the time layer n , and 

( )L u is the difference operator after space discretization. 

3.2. The Five-Order WENO Scheme 

Let ( )f x  to be a function, ( )if x′′′′  can use the five - order 

WENO scheme: 
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, ,x i x i

i i

f ff

x x∆

− +− +− +− +++++∂∂∂∂ ≈≈≈≈
∂∂∂∂ 2

                (6) 

In which, 

,

i i i i

x i

f f f f
f

x x x x

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

+ + + ++ + + ++ + + ++ + + +
−−−− − − +− − +− − +− − +    

= − + + −= − + + −= − + + −= − + + −    
    

2 1 11
7 7

12
 

, , ,WENO i i i if f f f
f

x x x x

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

− + − + − + − +− + − + − + − +− + − + − + − +− + − + − + − +
− − +− − +− − +− − +    

−−−−     
    

2 1 1
, 

(((( )))), , , ( ) ( )( )WENOf a b c d a b c b c dω ω= − + + − − += − + + − − += − + + − − += − + + − − +
0 2

1 1 1
2 2

3 6 2
, 

αω
α α α

====
+ ++ ++ ++ +

0

0

0 1 2

, 
αω

α α α
====

+ ++ ++ ++ +
2

2

0 1 2

, 

(((( ))))IS
α

ε
====

++++
0 2

0

1
, 

(((( ))))IS
α

ε
====

++++
1 2

1

6
, 

(((( ))))IS
α

ε
====

++++
2 2

2

3
, 

( ) ( )IS a b a b= − + −= − + −= − + −= − + −2 2

0 13 3 3 , 

( ) ( )IS b c b c= − + += − + += − + += − + +2 2

1 13 3 , 

( ) ( )IS c d c d= − + −= − + −= − + −= − + −2 2

2 13 3 3 , 

,k k k k k kf f f f f f∆ ∆+ −+ −+ −+ −
+ −+ −+ −+ −= − = −= − = −= − = −= − = −1 1

 

Where, ε  is a small amount. 

Samely, 

,

i i i i

x i

f f f f
f

x x x x

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

+ + + ++ + + ++ + + ++ + + +
++++ − − +− − +− − +− − +    

= − + + −= − + + −= − + + −= − + + −    
    

2 1 11
7 7

12

, , ,WENO i i i if f f f
f

x x x x

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

− + − + − + − +− + − + − + − +− + − + − + − +− + − + − + − +
+ + −+ + −+ + −+ + −    

++++     
    

2 1 1
. 

And for " ( )if x , the four order central difference scheme 

[8-10] is used: 

( ) ( )

( )

i i i i i

i i

f f f f ff

x x

+ − + −+ − + −+ − + −+ − + −− − − −− − − −− − − −− − − −∂∂∂∂ ≈≈≈≈
∂ ∆∂ ∆∂ ∆∂ ∆

2

1 1 2 2

2 2

16 30

12
     (7) 

In which i
f  represents the value of the function ( )f x  at 

the point i
x , i i ix x x++++∆ = −∆ = −∆ = −∆ = −

1 . 

3.3. The Runge-Kutta Weno TVD Type Difference Scheme 

for the FPK Equation 

For one dimensional FPK equation (1), the Runge-kutta 

Weno TVD type difference scheme of one-dimensional FPK 

equation can be obtained by combining the three order 

Runge-kutta TVD form and the five order WENO scheme of 

the differential equation. 

The Runge-kutta Weno TVD type difference scheme for 

one dimensional problem: 

(((( )))) (((( )))), ,

n n

j j n n n n n n n

j x j j x j j j j j j j j j j j

p p
a p a p b p b p b p b p b p

h hτ

++++
− +− +− +− +

− − − − + + + +− − − − + + + +− − − − + + + +− − − − + + + +

−−−−
= − + + − − + −= − + + − − + −= − + + − − + −= − + + − − + −

1

2 2 1 1 1 1 2 22

1 1
16 30 16

2 24
            (8) 

Where,  

,    
jn

n n n n

j j j

x j

p p

h
p

p p

h h h

∆ ∆ ∆ ∆
−−−−

++++ + + ++ + ++ + ++ + +
− +− +− +− +−−−−

    
    = − + + −= − + + −= − + + −= − + + −
        

2 1 11
7 7

12
 

, , ,
j

n n n n

j j jWENO
p p p p

f
h h h h

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
−−−−

− +− +− +− + − + − + − +− + − + − +− + − + − +− + − + − +
− +− +− +− +

    
    −−−−
    
    

2 1 1
, 

(((( )))), , , ( ) ( )( )WENOf a b c d a b c b c dω ω= − + + − − += − + + − − += − + + − − += − + + − − +
0 2

1 1 1
2 2

3 6 2
, 

αω
α α α

====
+ ++ ++ ++ +

0

0

0 1 2

, 
αω

α α α
====

+ ++ ++ ++ +
2

2

0 1 2

, 

(((( ))))IS
α

ε
====

++++
0 2

0

1
, 

(((( ))))IS
α

ε
====

++++
1 2

1

6
,

(((( ))))IS
α

ε
====

++++
2 2

2

3
, 

( ) ( )IS a b a b= − + −= − + −= − + −= − + −2 2

0 13 3 3 , 

( ) ( )IS b c b c= − + += − + += − + += − + +2 2

1 13 3 , 

( ) ( )IS c d c d= − + −= − + −= − + −= − + −2 2

2 13 3 3 , 

n n n n n n

k k k k k kf f f f f f∆ ∆+ −+ −+ −+ −
+ −+ −+ −+ −= − = −= − = −= − = −= − = −1 1  

In which, ε  is a small amount. 

And, ,

n n n n

j j j jn

x j

p p p p
p

h h h h

∆ ∆ ∆ ∆+ + + ++ + + ++ + + ++ + + +
− − +− − +− − +− − +++++

    
= − + + −= − + + −= − + + −= − + + −    

        

2 1 11
7 7

12
 

, , ,

n n n n

j j j jWENO
p p p p

f
h h h h

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆− + − + − + − +− + − + − + − +− + − + − + − +− + − + − + − +
+ + −+ + −+ + −+ + −    

++++     
    
    

2 1 1
. 

where, 
n

j
p  represents the corresponding value of the function 

( , )p x t  at the point 
,( )j nx t , h  is the size of the space step 

and τ  is the siza of the time step. 

4. Numerical Examples 

Example 1. A single degree of freedom nonlinear system 

with random external excitation is considered: 

( ) ( )X X X X W tε′′′′ = − − += − − += − − += − − +3 51

2
           (9) 

Where, ε  is a constant representating the intensity of 
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nonlinear systems, ( )W t is a zero mean white Gauss noise, its 

correlation coefficient is (((( ))))( ) ( ) ( )E W t W t Sτ π δ τ+ =+ =+ =+ = 02 , S
0
 

is the spectral density of ( )W t , and ( )δ τ  is the Dirac 

function. 

When S
π

====0

1
, the FPK equation of the steady-state 

probability density ( )p x  of the response of corresponding to 

the system (9) is: 

(((( )))) ( )
( )

d d p x
x x x p x

dx dx
ε    − − − =− − − =− − − =− − − =    

    

2

3 5

2

1
0

2
      (10) 

The solution is: 

( ) exp
x x x

p x C
ε    

= − −= − −= − −= − −    
    

2 4 6

4 8 12
           (11) 

In which C  is the normalized constant. The exact solution 

is compared with the numerical solution of the method in this 

paper, as shown in figure 1. 

 

Fig. 1. The exact solution and the numerical solution. 

Example 2. The nonlinear oscillator under the combined action of Gauss white noise and external excitation is considered: 

( ( )) ( / ) ( ( )) ( )X X W t X X X X W t W tα γ β ω ω γ γ′′ ′ ′ ′′′ ′ ′ ′′′ ′ ′ ′′′ ′ ′ ′+ + + + + + =+ + + + + + =+ + + + + + =+ + + + + + =2 2 2 2

1 1 2 2 3 3
2 1 1             (12) 

where ,α β  is constant, ω  is an normal number, 

( )( , , )
i

W t i ==== 1 2 3  is the Gauss white noise with zero mean, and 

independent of each other, which satisfy 

( ) ( ) ( )( , , )i i iE W t W t iτ δ τ+ = =+ = =+ = =+ = =         1 2 3 , δ  is the Dirac function, 

( , , )
i

iγ ==== 1 2 3  represents the noise intensity. 

When ω γ α γ====2 2 2 2

2 14 , the exact steady state solution is 

existed for the corresponding FPK equation of the system (2). 

That is 

(((( )))) (((( )))){{{{ }}}}( , ) / exp /
k

p y y C k y y y y
µ δ

ω µ ω
−−−−

= + + − += + + − += + + − += + + − +2 2 2 2 2 2

1 2 1 2 1 2 , 

in which ,y y
1 2

indicates the displacement and speed of 

response, and C  is the normalized constant, 
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, ,k
γ α βδ µ

γ ω γ ω γ ω
= = + == = + == = + == = + =

2

3

2 4 2 2 2 2

2 2 2

2 1

2
. The exact solution 

of the edge probability density of the displacement y
1

 and 

velocity y
2
 is compared with the numerical solution of the 

method in this paper, as shown in figure 2. 

 

Fig. 2(a). The exact solution and the numerical solution of displacement. 

 

Fig. 2(b). The exact solution and the numerical solution of velocity. 

5. Conclusion 

In this paper, the TVD Runge Kutta WENO difference 

scheme is obtained combing the third order TVD Runge Kutta 

method with the fifth order WENO scheme combined, is 

successfully applied to nonlinear dynamic system under the 

action of random excitation of, and the finite difference 

numerical solution of the FPK equation is obtained. It shows 

the validity and feasibility of the method, and overcomes the 

disadvantage of the common finite difference method. It can 

accurately obtain the smaller tail probability density and no 

oscillation, which is very important for the reliability analysis. 
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