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Abstract: In this paper, we investigate the stability of following max-type difference equation 
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values are positive. By constructing a system of equations and binary function, we show the equation has a unique positive 

equilibrium solution, and the positive equilibrium solution is globally asymptotically stable. The conclusion of this paper extends 

and supplements the existing results. 
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1. Introduction 

In mathematics, recursive relation, which is difference 

equation, is a kind of recursion formula to define a sequence: 

the sequence of each item is defined as a function. Difference 

equation is the discretization of differential equations. The 

difference system is described the mathematical model of 

discrete system, it is an important branch of dynamical system, 

the application of its theory is rapidly broadening to various 

fields, such as economics, ecology, physics, engineering, 

control theory, computer science and so on (see [1-4]). The 

stability and global behavior is one of the hot spots in 

researches about difference equation model, the conclusion 

has a certain guiding role to production practices. 

In recent years, more and more researches on the dynamic 

behaviors of higher order nonlinear difference equations have 

been studied (see [5-19]). One of the classes of such difference 

equations are max-type difference equations (see [10-19]). 

In [16], Amleh studied the nonlinear difference equation 

, showed that the unique positive equilibrium 

solution  is globally asymptotically stable: 

In [17], Fan studied the higher order difference equation 

, and gave a sufficient condition for its 

global asymptotical stability, these results are applied to the 

difference equation 1
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In [18], Sun studied global behavior of the max-type 

difference equation 1
max{1/ , / }

n n m n n r
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+ − −
= , 

proved that if (0,1)
n
A ∈  and 1sup

n
A <  is a periodic 

sequence, then every positive solution of this equation is 

eventually periodic with period 2m. 

In [19], Stević studied behavior of positive solutions of the 

following max-type system of difference equations, 
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system converges to (1,1). 

In this paper, we investigate the global stability of following 

max-type difference equation 
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⋅∑⋯ , the initial values are positive. By constructing a 

system of equations and binary function, we will formulate and 

prove the equation has a unique positive equilibrium solution, 

and the positive equilibrium solution is globally asymptotically 

stable. The conclusion of this paper extends and supplements 

the existing results, this conclusion has a certain guiding role to 

production practices as a mathematical model. 

For convenience, we denote , , 

. So . 

2. Some Definitions 

In this section we will introduce some definitions (see [20]) 

which will be needed. 

Definition A. [20] Let I be some interval of numbers and let 

:f I I I× →  be a continuously difference function. 

A difference equation of order (k+1) is an equation of the 

form  
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A point x I∈ is called equilibrium solution of the 
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we have lim
n

n

x x
→∞

= . 

Definition D. [20] The equilibrium x  of difference 

equation is called globally asymptotically stable if x  is 

locally stable, and x  is also a global attractor of the 

difference equation. 

3. Main Results 

In this section we formulate and prove some lemmas and 

main theorems in this paper, obtain that every positive solution 

of (1) has to be the ultimate form of globally asymptotically 

stable. 

Theorem 1. Equation (1) has a unique positive equilibrium 

solution . 

Proof. Since 
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suppose for every , there is [ , ]
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of equation (1) is globally asymptotically stable. 

Proof. In Theorem 2, we have proved x p AB= +  is 

locally stable, then we will prove x p AB= +  is global 

attractor. 
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. By Definition C, we know x p AB= +  is 

global attractor. 

According to Definition D, it is obviously that the 

equilibrium x p AB= +  of equation (1) is globally 

asymptotically stable. ＃ 

4. Example 

Consider one of example of differential equation (1): 
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where the initial values 
0 1 9
, , , (0, )x x x
− −

∈ +∞⋯ . Obviously, 

it satisfies the conditions of Theorem 3, so the unique 

equilibrium 38x =  of equation (4) is globally 

asymptotically stable. By giving the initial value assignment, 

the following figures 1-2 show the global asymptotic stability. 

If initial values 
0 1 9
= = = =10x x x

− −
⋯ , equilibrium 38x =  

is globally asymptotically stable (see Figure 1). 

If initialvalues 
3 6 9

0.05 ,x x x
− − −
= = =   

7 8
10x x

− −
= = , equilibrium 38x =  is globally 

asymptotically (see Figure 2). 

 

Figures 1. The solution of equation (4), when initial values 

0 1 9
= = = =10x x x

− −
⋯ . 

 

Figure 2. The solution of equation (4), when initial values 
3 6 9

0.05x x x
− − −

= = = , 
0 1 2 4 5 7 8

10x x x x x x x
− − − − − −

= = = = = = = . 

1≥n

1)1( ++≥ ln

≥n

xxn
n

=
∞→

lim

0 1 2 4 5x x x x x− − − −= = = = =
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5. Conclusion 

In this paper, we investigate the characters of positive 

solution of the max-type difference equation (1). 
First, we showed equation (1) has unique positive 

equilibrium x p AB= + . 

Then, we proved two useful lemmas. By citing lemmas we 

showed the main theorems in this paper, that is the equilibrium 

solution x p AB= +  of equation (1) is globally 

asymptotically stable. 
At last, we give an example of difference equation (1), draw 

the trajectory of the solution by giving two different initial 

values, thus intuitively reflect the global asymptotic stability. 
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