
 

Applied and Computational Mathematics 
2016; 5(1): 18-22 

Published online February 18, 2016 (http://www.sciencepublishinggroup.com/j/acm) 

doi: 10.11648/j.acm.20160501.13 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

Quenching for a Diffusion System with Coupled Boundary 
Fluxes 

Haijie Pei
*
, Wenbo Zhao 

College of Mathematic and Information, China West Norm University, Nanchong, P. R. China 

Email address: 
Haijie-Pei@sohu.com (Haijie Pei), Wenbo-Zhao@sohu.com (Wenbo Zhao) 

To cite this article: 
Haijie Pei, Wenbo Zhao. Quenching for a Diffusion System with Coupled Boundary Fluxes. Applied and Computational Mathematics.  

Vol. 5, No. 1, 2016, pp. 18-22. doi: 10.11648/j.acm.20160501.13 

 

Abstract: In this paper, we investigate a diffusion system of two parabolic equations with more general singular coupled 

boundary fluxes. Within proper conditions, we prove that the finite quenching phenomenon happens to the system. And we also 

obtain that the quenching is non-simultaneous and the corresponding quenching rate of solutions. This extends the original work 

by previous authors for a heat system with coupled boundary fluxes subject to non-homogeneous Neumann boundary conditions. 
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1. Introduction 

In the present work, we mainly deal with the following 

diffusion system with singular coupled boundary fluxes 

0 0

( , ) , ( , ) , ( , ) (0,1) (0, ),

(0, ) ( (0, )), (1, ) 0, (0, ),

(0, ) ( (0, )), (1, ) 0, (0, ),

( ,0) ( ), ( ,0) ( ), [0,1].

t xx t xx

x x

x x

u x t u v x t v x t T

u t f v t u t t T

v t g u t v t t T

u x u x v x v x x

= = ∈ ×

= = ∈

= = ∈

= = ∈

 (1) 

For functions 0( )u x  and 0( )v x , we always assume that 

initial data satisfies 0 0( ), ( ) 0u x v x′ ′ ≥  and 0( ),u x′′ 0 ( ) 0v x′′ ≤
with 0 00 ( ), ( ) 1.u x v x< <  To facilitate the following research, 

we also suppose that functions ( )f v  and ( )g u  verify the 

assumptions: 

1( )H ( )f v  and ( )g u are locally Lipschitz on , (0,1]u v∈ ; 

2( )H ( ) 0f v′ <  and ( ) 0g u′ <  for , (0,1]u v∈ ; 

3( )H
0

lim ( )
v

f v
+→

= ∞  and 
0

lim ( )
u

g u
+→

= ∞ . 

In the model (1), u and v can be thought as the 

temperatures of two mixed media during the heat propagation. 

This is a one-dimensional heat conduction rod of length 1 with 

positive initial temperatures 0( )u x , 0( )v x . At the left end 

{x=0}, heat is taken away with a rate ( (0, ))f v t  and 

( (0, ))g u t  for u  and v , respectively. The right end {x=1} 

is thermal isolation with (1, ) (1, ) 0x xu t v t= = . Since the 

assumption proposed for the system implies that the two 

components are coupled completely and enhanced each other 

in the model. It is known that the singular negative flux at the 

boundary {x=0} may result in the so called finite time 

quenching of solutions, which makes it so interesting to 

investigate the quenching phenomenon of the solutions, see 

[2-5, 7-8, 11-13] and some survey papers [1, 6, 10]. Right here, 

we say that the solution ( , )u v  of the problem (1) quenches, 

if ( , )u v  exists in the classical sense and is positive for all

0 t T≤ < and satisfies  

0 1
lim inf min { ( , ), ( , )} 0

xt T
u x t v x t

− ≤ ≤→
= . 

If this happens, T will be called as quenching time. Since a 

singularity develops in the absorption term at quenching time 

T, thus the classical solution doesn't exist anymore. 

Due to the great work by many previous researchers, the 

blow-up problems of parabolic equation have been studied 

gradually matured, thus plenty of authors have begun to pay 

attention to the quenching phenomena and become a heated 

study field. 

Ferreira, Pablo and Quirs. etc in [2] studied a system of heat 

equations coupled at the boundary 
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     (2) 

They obtained that if , 1p q ≥ , and then quenching is 

always simultaneous. While if p 1<  or q 1< , 

non-simultaneous quenching indeed occurs. If 0 , 1p q< < , 

then there exists initial data such that simultaneous quenching 

produces. Besides, if quenching is non-simultaneous and, for 

instance u is the quenching variable, then 
1

1(0, ) ~ ( )qu t T t +−

and (0, ) ~u T x , where and throughout this paper, the 

notation ~f g  means that there exist two positive constants 

1 2,c c  such that 1 2c f g c f≤ ≤  with some 1 2c c≤  holds 

for t close to the quenching time T . 

Zheng and Song in [3] studied phenomena of 

non-simultaneous quenching to a coupled heat system 

0 0

( , ) , ( , ) , ( , ) (0,1) (0, ),

(0, ) 0, (1, ) (0, ), (0, ),

(0, ) 0, (1, ) (0, ), (0, ),

( ,0) ( ), ( ,0) ( ), [0,1].

t xx t xx

p
x x

q
x x

u x t u v x t v x t T

u t u t v t t T

v t v t u t t T

u x u x v x v x x

−

−

= = ∈ ×

= = − ∈

= = − ∈

= = ∈

    (3) 

They gave an accurate non-simultaneous quenching 

classification and the corresponding quenching rates of (1.3) 

were determined as below: 

1 1

2( 1) 2( 1)

1 1

4 4

1 1

2( 1) 2( 1)

(1, ) ~ ( ) , (1, ) ~ ( ) , if , 1 or , 1;

(1, ) ~ ( ) , (1, ) ~ ( ) , if 1;

(1, ) ~ ( ) , (1, ) ~ ( ) , if 1;

p q

pq pq

p q

pq pq

u t T t v t T t p q p q

u t T t v t T t p q

u t T t v t T t q p

− −
− −

− −
− −

− − > <

− − = =

− − > =

 

for simultaneous quenching, and 
1

1(1, ) ~ ( )qu t T t +−
 for 

non-simultaneous quenching. 

Fila and Levine in [4] studied the following finite time 

quenching for the scalar equations 

0

( , ) , ( , ) (0,1) (0, ),

(0, ) 0, (1, ) (1, ), (0, ),

( ,0) ( ), [0,1].

t xx

q
x x

u x t u x t T

u t u t v t t T

u x u x x

−
= ∈ ×

= = − ∈

= ∈

     (4) 

They obtained the quenching rate is 
1

2( 1)(1, ) ~ ( ) qu t T t +−

as t T −→ . 

Ji, Qu and Wang in [5] considered finite time quenching 

problem for parabolic system 

0 0

( , ) , ( , ) , ( , ) (0,1) (0, ),

(0, ) ( )(0, ), (1, ) 0, (0, ),

(0, ) ( )(0, ), (1, ) 0, (0, ),

( ,0) ( ), ( ,0) ( ), [0,1],

t xx t xx

m p
x x

q n
x x

u x t u v x t v x t T

u t u v t u t t T

v t u v t v t t T

u x u x v x v x x

− −

− −

= = ∈ ×

= + = ∈

= + = ∈

= = ∈

  (5) 

where , 0, , 0,m n p q≥ >  0( )u x  and 0( )v x  are smooth 

positive initial data. They obtained that if v does not quench in 

(5), then 1q m< + . If 1, 1q m p n≥ + ≥ + , then any 

quenching in (5) must be simultaneous, while if 1p n< + , 

then there exist initial data such that v quenches but u doesn’t. 

If
( 1) ( 1)

( )
1 1

n m m n
q p

n m

+ +≤ ≤
+ +

, and 1p n≥ +  ( 1)q m≥ +  

then the component u(v) quenches alone under any positive 

initial data. Besides, if 1p n< +  and 1q m< + , then both 

simul -taneous and non-simultaneous quenching may occur in 

(5), which depends on the initial data. And the set of initial 

data such that one component quenches alone is open. 

Furthermore, assume that u quenches at time T with v keeping 

positive in (5), then 
1

2 2(0, ) ~ ( ) mu t T t +− . On the other hand, 

simultaneous quenching rates are also discussed under 

different conditions. 

Some authors also studied the following coupled heat 

equations with nonlinear terms. For example, A de Pablo, F. 

Quirós and J. D. Rossi [6] studied the non-simultaneous 

quenching in a semilinear parabolic system 

0 0

( , ) , ( , ) , ( , ) (0,1) (0, ),

(0, ) (1, ) 0, (0, ),

(0, ) (1, ) 0, (0, ),

( ,0) ( ), ( ,0) ( ), [0,1],

p q
t xx t xx

x x

x x

u x t u v v x t v u x t T

u t u t t T

v t v t t T

u x u x v x v x x

− −= − = − ∈ ×
= = ∈
= = ∈

= = ∈

                   (6) 
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Zhi and Mu in [7] studied the non-simultaneous quenching in a semilinear parabolic system 

0 0

( , ) log( ), ( , ) log( ), ( , ) (0,1) (0, ),

(0, ) (1, ) 0, (0, ),

(0, ) (1, ) 0, (0, ),

( ,0) ( ), ( ,0) ( ), [0,1].

t xx t xx

x x

x x

u x t u v v x t v u x t T

u t u t t T

v t v t t T

u x u x v x v x x

α β= + = + ∈ ×
= = ∈
= = ∈

= = ∈

                    (7) 

And Ji, Zhou and Zheng in [8] studied the coupled system  

0 0

( , ) ( ), ( , ) (0,1) (0, ),

( , ) ( ), ( , ) (0,1) (0, ),

(0, ) (1, ) 0, (0, ),

(0, ) (1, ) 0, (0, ),

( ,0) ( ), ( ,0) ( ), [0,1].

m p
t xx

q n
t xx

x x

x x

u x t u u v x t T

v x t v u v x t T

u t u t t T

v t v t t T

u x u x v x v x x

− −

− −
= − + ∈ ×

= − + ∈ ×

= = ∈

= = ∈

= = ∈

 (8) 

All of them have identified simultaneous and non- 

simultaneous quenching by a precise classification of 

parameters, and establish simultaneous quenching rates or 

non-simultaneous quenching rates. 

Motivated by those papers and references therein, the main 

purpose of this paper is to study a more general system (1) to 

obtain a lot of more general conclusions for the 

non-simultaneous quenching phenomenon with coupled 

fluxes at the boundary, which appeared in many papers with 

some special case, see [2-6, 11-13]. 

2. Main Results and Proof 

In this section, we mainly deal with the non-simultaneous 

quenching, quenching rates and quenching set. 

At first, we will prove a priori estimate to begin our study, 

which ensures that quenching always happens for the 

diffusion system (1.1). To simplify the presentation of the 

proofs, we define the functions as follows 

0 1 0 1
( ) (0, ) min ( , ), ( ) (0, ) min ( , ).

x x
t u t u x t t v t v x t

≤ ≤ ≤ ≤
Φ = = Ψ = =    (9) 

Lemma 2.1 Quenching happens for system (1.1) for every 

initial data. 

Proof: By the maximum principle we have 

0 0,u M u v N v∞ ∞≤ = ≤ = . 

Therefore, by integrating 1(1) in the interval [0, 1], we can 

obtain  

1 1

0 0 0 0 0
d d d d ( (0, ))d .

t t t
s xxu x s u s x f v s s= = −∫ ∫ ∫ ∫ ∫  

Since ( )f v is locally Lipschitz on (0, 1] and ( ) 0f v′ < for

(0,1]v ∈ , hence we have  

1
00

( ( , ) ( ))d ( ).u x t u x x tf N− ≤ −∫  

This implies the following mass estimates, 

1

0
0 ( , )d ( ).u x t x M tf N< ≤ −∫  

Similarly, by integrating 1(1)  in the interval [0, 1], we can 

obtain  

1 1

0 0 0 0 0
d d d d ( (0, ))d .

t t t
s xxv x s v s x g u s s= = −∫ ∫ ∫ ∫ ∫  

Since ( )g u  is locally Lipschitz on (0, 1] and ( ) 0g u′ <  

for (0,1]u ∈ , hence we have  

1
00

( ( , ) ( ))d d ( ),v x t v x s x tg M− ≤ −∫  

Thus we can also get the following mass estimates, 

1

0
0 ( , )d ( ).v x t x N tg M< ≤ −∫  

Consequently, there exists a finite time T , such that 

quenching happens as t T→ . Otherwise it will produce a 

contradictions if ,u v
 are positive for all times. 

Lemma 2.2 There exists a positive constant δ > 0, such that 

( ) ( ( )), ( ) ( ( )), [0, ).t g t t f t t Tδ δ′ ′Φ ≤ − Φ Ψ ≤ − Ψ ∈    (10) 

Proof: Consider functions , ,t x t xF u v G v uδ δ= + = +  

it’s easy to check that ,F G  are solutions to the heat equation. 

If we choose 0δ > small enough, for every [0,1]x ∈ , we 

have ( ,0), ( ,0) 0.F x G x <  Notice that u and v are decreasing 

in time, so we can get (1, ), (1, ) 0.F t G t <  As to the flux at

0x = , we have 

( ( ) ) (0, ), ( ( ) ) (0, )x t x tF f v v F t G g v u G tδ δ′ ′= + ≥ − = + ≥ −  

with δ  small sufficiently. Thus by the maximum principle, 

we can obtain that ( , ), ( , ) 0F x t G x t ≤  for every [0,1]x ∈  

and [0, ).t T∈  The result in (2.5) is just the particular case for

0x = . 

Moreover, we have the following estimates via directly 

integrating for inequalities (2.5). 

Corollary 2.1 
( ) ( )

0 0

d d
( ), ( ).

( ) ( )

t t
C T t C T t

g f

τ ξ
τ ξ

Φ Ψ
≥ − ≥ −∫ ∫  

Within these estimates we can obtain the following 

corollary. 
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Corollary 2.2 The quenching time is continuous with 

respect to the initial data. 

Since the proof is similar to the Theorem 2.1 in [1], we omit 

here. 

Lemma 2.3 There exists a constant 0C >  such that, 

d ( ) d ( )
( ) ( ), ( ) ( ).

d d

f g
t C g t C f

Ψ Φ′ ′Φ ≥ − Φ Ψ ≥ − Ψ
Ψ Φ

   (11) 

Proof: Let ( ) ( ), ( ) ( ),x xH u x f v I v x g uϕ ϕ= − = −  where 

: [0,1] [0,1]ϕ →
 is a nonnegative, non-increasing, convex 

2C  function such that (0) 1, (1) 0,ϕ ϕ= = and

0 0 0 0( ) ( ) ( ( )), ( ) ( ) ( ( )),x u x f v x x v x g u xϕ ϕ′ ′≤ ≤ for [0,1].x ∈  

It’s easy to find that H and I  are nonnegative at 0t = . 

Besides, differentiating H  we can get 

2( ) ( ) 2 ( ) ( ) ( ) ( )( ) 0.t xx x xH H x f v x f v v x f v vϕ ϕ ϕ′′ ′ ′ ′′− = + + ≥  

Similarly, we can get 

2( ) ( ) 2 ( ) ( ) ( ) ( )( ) 0.t xx x xI I x g u x g u u x g u uϕ ϕ ϕ′′ ′ ′ ′′− = + + ≥  

In other words, H  and I  are super-solutions for the 

heat equation. In addition, they vanish at the border 0x =  

and 1x = . Hence ( , ), ( , ) 0H x t I x t ≥  for every ( , )x t

[0,1] [0, )T∈ × , which implies , 0x xH I ≥ for some particular 

case, that is to say, 

(0, ) (0, ) (0) ( (0, )) ( (0, )) (0, ) ( (0, )) ( (0, )).t xx xu t u t f v t f v t v t Cf v t g u tϕ′ ′ ′= ≥ + ≥ −  

And the analogous estimate holds for v , 

(0, ) (0, ) (0) ( (0, )) ( (0, )) (0, ) ( (0, )) ( (0, )).t xx xv t v t g u t g u t u t Cg u t f v tϕ′ ′ ′= ≥ + ≥ −

To this end, the proof of this lemma is complete. 

Lemma 2.4 The quenching point is only the origin 0x = . 

Proof: Since ( , ) 0H x t ≥ , we have

( )
( , ) ( ) ( ( , ))

3
x

f N
u x t x f v x tϕ≥ ≥  for every such that

0
1

( )
3

xϕ = . Therefore, we obtain ( , ) (0, )u x t u t Cx≥ + . The 

similar estimate also holds for v . Thus we can obtain that the 

quenching point is only the origin. 

Theorem 2.1 Let ( , )t tu v be time-derivatives of ( , )u v , and 

then ( , )t tu v  will blow up at quenching point 0x =  

simultaneously. 

Proof: Define functions 1 2( , ) ( (0, )), ( , ) ( (0, )),0 1, ,t tJ x t u g v t J x t v f u t x t Tε ε τ= + = + ≤ ≤ ≤ <  where (0, ),Tτ ∈  

ε is some positive constant. Thus 1( , )J x t  and 2( , )J x t

verify the follows, 

1 1

2 2

( ) ( ) ( (0, )) (0, ) 0,

( ) ( ) ( (0, )) (0, ) 0.

t xx t

t xx t

J J g v t v t

J J f u t u t

ε
ε

′− = ≥
′− = ≥

 

So we have 1 2( , ) 0, ( , ) 0J x J xτ τ> > . Furthermore, we can 

obtain  

1 2

1 2

( ) (1, ) ( ) (1, ) 0. ,

( ) (0, ) 0, ( ) (0, ) 0. .

x x

x x

J t J t t T

J t J t t T

τ
τ

= = < <
≥ ≥ < <

 

Since ( ,0) 0tu x <  and ( (0, ))g v t  is bounded, select a 

proper ε , we have 1( ,0) 0J x ≥ . 

Similarly, we also have 2 ( ,0) 0J x ≥ . By the maximum 

principle, we can get 1 1( , ) 0, ( , ) 0J x t J x t≥ ≥ , which means 

( (0, )),0 1, ,

( (0, )),0 1, .

t

t

u g v t x t T

v f u t x t T

ε τ
ε τ

≥ − ≤ ≤ ≤ <
≥ − ≤ ≤ ≤ <

 

Let t T −→ , we can get the conclusion 

1 1
lim , lim .t t

t T t T
u v

− −→ →
= ∞ = ∞  

To this end, the proof is complete. 

Theorem 2.2 If quenching is non-simultaneous and let u be 

the quenching variable, then 

1(0, ) ~ ( ( )), (0, ) ~ ( )tu t g C T t u t C T t− − −  and ( , ) ~u x T x . 

Proof: In Lemma 2.1, we have given the lower bound of the 

non-simultaneous rate, while the upper bound can be obtained 

easily by integrating the first estimate in (11). Using that

C>0Ψ ≥ : ( ( )) ( )g t C T tΦ ≤ − . As 0x → , by lower estimate 

given in Corollary 2.1, then upper estimate follows directly 

from the fact that u is concave; therefore 

( , ) (0, ) ( (0, ))x xu x t u t f v t C≤ = ≤ . 

To this end, the proof of Theorem 2.1 is complete. 

3. Conclusion 

Throughout this paper, we have studied the solutions of a 

parabolic system of heat equations coupled at the boundary 

through a singular flux. This system displays a singularity in 

finite time, which is called quenching in the literature. We 

obtained the quenching point is the origin, non-simultaneous 

quenching rates. To some degree, our work extends the 
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original work by previous authors for a heat system with 

coupled boundary fluxes for a more general boundary flux. 

We have to admit that there are still many possible 

improvements and extensions of our results. One possibility is 

that we consider the diffusion process in a higher dimension. 

If we study the radial solutions in a ball, some similar results 

may hold as well. Besides, we can extend the local diffusion to 

nonlocal diffusion, which may be more effective to describe 

the real situation. Another aspect for us to improve is to find a 

method to identify the non-simultaneous quenching and 

simultaneous quenching, which once was determined by some 

parameters. 
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