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Abstract: This paper discusses the eigenvalue problem of second-order Sturm-Liouville equation. We transform the governing 
differential equation to the Fredholm-Volterra integral equation with appropriate end supports. By expanding the unknown 
function into the shifted Chebyshev polynomials, we directly get the corresponding polynomial characteristic equations, where 
the lower and higher-order eigenvalues can be determined simultaneously from the multi-roots. Several examples of estimating 
eigenvalues are given. By comparison with the exact results in open literatures, the correctness and effectiveness of the present 
approach are verified. 
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1. Introduction 

Sturm-Liouville problems play an important role in several 
areas, such as physical, engineering and other scientific fields 
[1]-[2]. However, it is difficult to obtain exact expression of 
eigenvalues for such problem with different potential 
functions. In the past decades, various aspects of the 
numerical theory as well as approximate methods for this 
problem were presented to acquire the numerical results of 
eigenvalues. A simple asymptotic correction technique was 
employing by Andrew [3] to compute the eigenvalues of 
regular Sturm–Liouville problems with periodic or 
semiperiodic boundary conditions. Based on the boundary 
value methods, Ghelardnoi [4] used some linear multistep 
methods to discretize the Sturm-Liouville problem and 
investigate the approximations of eigenvalues. The 
eigenvalues of regular Sturm–Liouville problems with 
periodic boundary conditions was calculated in [5] by the 
finite difference scheme. In [6] and [7], Çelik and co-workers 
used the Chebyshev collocation method to investigated for the 
approximate computation of Sturm–Liouville eigenvalues by 
transforming the problems and given boundary conditions to 
matrix equation. Yuan et al. [8] proposed the Chebyshev 
collocation method to compute the approximate eigenvalues 
of regular Sturm–Liouville problems with two points and 
(semi-)periodic boundary conditions. Chen and Ma [9] used 
the Legendre–Galerkin–Chebyshev collocation method, 

which preserves the symmetry of the problem, to compute the 
approximate eigenvalues of the Sturm–Liouville problem with 
kinds of different boundary conditions. Zhang [10] cretized 
the Sturm–Liouville problems (SLPs) into standard matrix 
eigenvalue problems in order to achieve high accuracy and 
high efficiency by using the mapped barycentric Chebyshev 
differentiation matrix method. Based on the homotopy 
analysis method, Abbasbandy and Shirzadi [11] calculated the 
approximate eigenvalues of the second and fourth-order 
Sturm–Liouville problems. El-gamel and El-hady used the 
differential quadrature method and collocation method with 
sinc functions for computing eigenvalues of Sturm–Liouville 
problems [12]. 

In this paper, we will introduce an efficient approach to 
investigate the eigenvalues of Sturm-Liouville problem. For 
various boundary conditions, we transform the governing 
equation to the Fredholm–Volterra integral equations. Then a 
system of algebraic equations will be derived based on the 
Chebyshev polynomials expansion of the unknown function. 
The characteristic values can be easily determined from the 
existence condition of a nontrivial solution in the resulting 
system. Several examples used frequently in Sturm-Liouville 
problem will be used to demonstrate the accuracy of 
approximation. 

2. Integral Equation Method 

In the following, we consider the Liouville normal form of 
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the general Sturm-Liouville equation: 

( ) ( ) ( ) 0y x q x y x a x bλ
′′  + − = , ≤ ≤ ,          (1) 

where the ( )q x  is a given function, ( )y x  is an unknown 

function satisfying certain boundary conditions, and the 
parameter λ  is the eigenvalue needed to be determined. 
During this paper, four familiar end conditions will be 
discussed: 

Case A ( ) ( ) 0y a y b: = = ,             (2) 

Case B ( ) ( ) 0y a y b′: = = ,            (3) 

Case C ( ) ( ) 0y a y b′: = = ,             (4) 

Case D ( ) ( ) ( ) ( )y a y b y a y b′ ′: = − , = − .   (5) 

The problem is actually of solving a set of second-order 
differential governing equation (1) and the corresponding end 
supports. Avoiding solving that differential equation directly, 
we introduce an integral equation method to convert the 
problem to Fredholm–Volterra integral equations with various 
boundary conditions. For this purpose, integrating both sides 
of Eq. (1) with respect to x  from a  to x,  one gets 

1
( ) ( ) ( )

x

a
y x q t y t dt Aλ′  + − = .  ∫        (6) 

Then we repeat to integrate both sides of Eq. (6) with 
respect to x  from a  to x,  yielding 

( ) 2 1
( ) ( ) ( )

x

a
y x x t q t y t dt A Axλ + − − = + ,  ∫      (7) 

where 
1
A  and 

2
A  are unknown constants that can be 

determined from the given boundary conditions. Once these 

two constants ( 1 2)
j
A j = ,  can be uniquely obtained, we then 

substitute these values 
j
A  into Eq. (7) and immediately 

derive an integral equation in ( )y x  of the following form: 

1 2
( ) ( ) ( ) ( ) ( ) 0

x b

a a
y x K x t y t dt K x t y t dt+ , + , = .∫ ∫    (8) 

(1) Case A:. ( ) ( ) 0y a y b= =  

By setting 0 1x = ,  in (7), respectively, we can get two 

linear equations about 
1
A  and 

2
A  as: 

2 1
0A Aa+ = ,                 (9) 

( )2 1
( ) ( )

b

a
A Ab b t q t y t dtλ + = − − .  ∫      (10) 

Solving the above algebraic equations, one can obtain 

( )1

1
( ) ( )

b

a
A b t q t y t dt

b a
λ = − − ,  − ∫       (11) 

( )2
( ) ( )

b

a

a
A b t q t y t dt

b a
λ

−  = − − .  − ∫       (12) 

Substituting them back into (7), and after collection we get 
a Fredholm–Volterra integral equation as follows: 

1 2
( ) ( ) ( ) ( ) ( ) 0

x b

a a
y x K x t y t dt K x t y t dt+ , + , = ,∫ ∫     (13) 

with 

( )1
( ) ( )K x t x t q tλ , = − − ,            (14) 

( )2
( ) ( )

a x
K x t b t q t

b a
λ

−  , = − −  −
      (15) 

(2) Case B:. ( ) ( ) 0y a y b′= =  

Applying the condition ( ) 0y a =  in (7) leads to 

1 2
0Aa A+ = ,                  (16) 

On the other hand, we substitute the condition ( ) 0y b′ =  

to (6), yielding 

1
( ) ( )

b

a
A q t y t dtλ = − .  ∫            (17) 

Putting the above into Eq. (16), one gets 

2
( ) ( )

b

a
A a q t y t dtλ = − − .  ∫            (18) 

Finally, substituting 
j
A  into Eq. (7), we obtain a 

Fredholm–Volterra integral equation for case B as follows: 

1 2
( ) ( ) ( ) ( ) ( ) 0

x b

a a
y x K x t y t dt K x t y t dt+ , + , = ,∫ ∫        

(19) 

with 

( )1
( ) ( )K x t x t q tλ , = − − ,            (20) 

( )2
( ) ( )K x t a x q tλ , = − − .             (21) 

(3) Case C:. ( ) ( ) 0y a y b′ = =  

Bearing ( ) 0y a′ =  in mind, setting x a=  in (6) leads to 

1
0A = .                    (22) 

Applying the condition ( ) 0y b =  to (7), we get 
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( )2
( ) ( )

b

a
A b t q t y t dtλ = − − .  ∫         (23) 

Plugged 
j
A  into Eq. (7), the final Fredholm–Volterra 

integral equation is derived as follows: 

1 2
( ) ( ) ( ) ( ) ( ) 0

x b

a a
y x K x t y t dt K x t y t dt+ , + , = ,∫ ∫    (24) 

with 

( )1
( ) ( )K x t x t q tλ , = − − ,           (25) 

2
( ) ( ) ( )K x t t b q tλ , = − − .            (26) 

(4) Case D:. ( ) ( )y a y b= − ,  ( ) ( )y a y b′ ′=−  

Setting x a b= ,  in (6) and (7), respectively, after using the 

condition ( ) ( )y a y b′ ′=−  and ( ) ( )y a y b= − , we can obtain 

1
2 ( ) ( )

b

a
A q t y t dtλ = − ,  ∫           (27) 

( )2 1
2 ( ) ( ) ( )

b

a
A A a b b t q t y t dtλ + + = − − .  ∫      (28) 

Therefore, 
1
A  and 

2
A  can be obtained by solving the 

above algebraic equations 

1

( )
( )

2

b

a

q t
A y t dt

λ−
= ,∫             (29) 

2

2
( ) ( )

4

b

a

b a t
A q t y t dtλ

− −  = − .  ∫       (30) 

With these obtained 
j
A , after some simplification we 

finally derive the Fredholm–Volterra integral equation as 
follows: 

1 2
( ) ( ) ( ) ( ) ( ) 0

x b

a a
y x K x t y t dt K x t y t dt+ , + , = ,∫ ∫    (31) 

with 

( )1
( ) ( )K x t x t q tλ , = − − ,           (32) 

2

2 2
( ) ( )

4

a t b x
K x t q tλ

+ − −  , = − .        (33) 

3. Characteristic Equation of the 

Problem 

In the preceding section, for some typical boundary 
conditions, we have converted the governing differential 
equation (1) to the corresponding Fredholm–Volterra integral 
equation (8). In the following, a simple approach will be 

introduced to solve the integral equations. It is well-known 
that the first kind of Chebyshev polynomials can be derived by 
the following recurrence relations: 

0 1
( ) 1 ( )T Tξ ξ ξ
∗ ∗= , = ,             (34) 

1 1
( ) 2 ( ) ( )

i i i
T T Tξ ξ ξ ξ
∗ ∗ ∗
+ −= − ,         (35) 

where ξ  is over the interval [ 1 1]− , .  After introducing a 

variable substitution 
2 2

a bb ax ξ +−= + ,  we can easily derive 

the Chebyshev polynomials over the interval [ ]a b,  

0 1

2
( ) 1 ( )

x a b
T x T x

b a

− −
= , = ,

−
        (36) 

1 1

4 2 2
( ) ( ) ( )

i i i

x a b
T x T x T x

b a+ −

− −
= − .

−
     (37) 

Firstly, we expand the unknown ( )y x  into the shifted 

Chebyshev polynomials in general over the interval [ ]a b,  as 

( )
0

( )
N

i i
i

y x cT x a x b
=

= , ≤ ≤ ,∑          (38) 

where 
i
c  are unknown coefficients, and N  is a certain 

positive integer. Putting the expansion (38) into the resulting 
Fredholm–Volterra integral Eq. (8) for each case leads to 

1
0 0

2
0

( ) ( ) ( )

( ) ( ) 0

N N x

i i i i
a

i i
N b

i i
a

i

cT x c K x t T t dt

c K x t T t dt

= =

=

+ ,

+ , = .

∑ ∑ ∫

∑ ∫
      (39) 

Multiplying both sides of (39) by ( )
j
T x  and then 

integrating with respect to x  between a  and b , one can get 

a system of linear algebraic equations in 
i
c : 

1 2
0

( ) 0 0 1 2
N

ij ij ij i
i

T K K c j N
=

+ + = , = , , ,.. ,∑       (40) 

with 

( )
( )

1

1 2

2

( ) ( )

( ) ( )

( ) ( )

b

ij i j ij
a

b x

i j ij
a a

b b

i j
a a

T T x T x dx K

K x t T t T x dtdx K

K x t T t T x dtdx

= ,

= , ,

= , .

∫
∫ ∫
∫ ∫

        (41) 

In order to acquire a nontrivial solution of the linear 
algebraic equations (40), the determinant of the coefficient 
matrix of the system has to vanish, namely: 

1 2
det( ) 0

ij ij ij
T K K+ + = .          (42) 
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Therefore, we have derived the characteristic equation in 
eigenvalue λ.  By inspecting this obtained equation, we can 
easily find that it is actually a polynomial in eigenvalue λ  
that has multi-roots of positive solutions, which are 
corresponding to the lower and higher eigenvalues. 

4. Illustrative Examples 

In this section, several illustrative examples used frequently 
in Sturm-Liouville problem are presented to show the 
efficiency of the proposed method. We first consider the 
following example 

( ) ( )y x y xλ′′− = .                 (43) 

where ( ) 0q x = .  This is a second-order ordinary differential 

equation. A general solution to Eq. (43) can be immediately 
obtained based on a standard approach for solving the above 
equation 

1 2
cos( ) sin( )y C x C xλ λ= + ,           (44) 

where 
1
C  and 

2
C  are unknown constants that can be 

determined from the boundary conditions. Here three 

boundary conditions are discussed: (1) (0) (1) 0y y= = ; (2) 

(0) (1) 0y y ′= = ;  (3) (0) (1) 0y y′ = = .  Substituting the Eq. 

(44) to the corresponding supported ends, after collection we 

can get the exact characteristic values of (43): (1) ( )2kλ π= ;  

(2) ( )21

2
kλ π π= ;−  (3) ( )21

2
kλ π π= ,−  k Z +∈ .  In 

order to check the correctness and convergence of the 
introduced approach, we have calculated the first four 
characteristic values of Sturm-Liouville equation (43) by 
taking different N  values in (38). The evaluated results and 
the exact characteristic values λ  are listed in Table 1 for the 

condition (0) (1) 0y y= = . With N  increasing from 6  to 

12 , the errors between the numerical and exact results 
dramatically decrease. This indicates that the numerical 
results have a rapid convergence with N  increasing. From 
Table 1 we can find that the obtained results of 12N =  are 
in excellent agreement with exact ones, which are identical to 
each other up to 10 decimal digits for the first two eigenvalues. 
Based on the present approach, we have calculated first four 
characteristic values λ  for Case 2 and Case 3 with 12N =  
where the results and the relative errors between those are 
tabulated in Table 2. A good agreement between the present 
computed results and exact results can be observed for the two 
cases from Table 2. Sturm-Liouville value problem arises in 
many physical, engineering and other scientific fields. The 
most important characteristic value for such problem is the 
first-order value, which is corresponding to the fundamental 
natural frequency or critical buckling loads or other material 
properties in those fields. We can find that our results of the 
first-order only letting 8N =  are identical to the exact 
results. 

Table 1. Numerical and exact results for Example 1 with (0) (1) 0y y= = . 

k  6N =  8N =  10N =  12N =  Exact solution 

1  9.8696044014 9.8696044011 9.8696044011 9.8696044011 9.8696044011 
2 39.4797374430 39.4784194279 39.4784176054 39.4784176044 39.4784176044 
3 88.8637975768 88.8266312672 88.8264400203 88.8264396102 88.8264396098 
4 167.9171940870 158.2551516722 157.9179860576 157.9136936606 157.9136704174 

Table 2. Numerical and exact characteristic values for Example 1 with 12N = . 

 (0) (1) 0y y ′= =  (1) (0) 0y y′ = =  

k  Exact solution Present Relative errors Exact solution Present Relative errors 

1  2.4674011003 2.4674011003 0 2.4674011003 2.4674011003 0 
2  22.2066099025 22.2066099025 0 22.2066099025 22.2066099025 0 

3  61.6850275068 61.6850275069 1.62 1210−×  61.6850275068 61.6850275069 1.62 1210−×  

4  120.9026539133 120.9026543279 3.42 910−×  120.9026539133 120.9026543279 3.42 910−×  

 
Next we consider the following Sturm–Liouville problem 

( ) 10 cos(2 ) ( ) ( )y x x y x y xλ′′− + = ,          (45) 

with the boundary condtion 

2 2 2 2
( ) ( ) ( ) ( )y y y yπ π π π′ ′− = − , − = − . By using the mapped 

barycentric Chebyshev differentiation matrix method, Zhang 
[10] has calculated the characteristic values λ  of sucn 
Sturm–Liouville problem. For 12N = , we employ the 
introduced method to determine the first four eigenvalues’ 
approximations. The relative errors between the exact solution 
and our numerical results are tabulated in Table 3. Table 3 
demonstrates that the present results are in very good 
agreement with the exact results [10]. 

Table 3. Numerical results of eigenvalues and the relative errors with 

12N = . 

k  Exact results[10] Present results ( 12N = ) 
Relative 

errors 

1  1.8581875415 1.8581900975 1.37 610−×  

2  9.2363277137 9.2364554543 1.38 510−×  

3  11.5488320363 11.5488428274 9.34 710−×  

4  25.5108160463 25.5136131113 1.10 410−×  

As the last example, we discuss the following 
Sturm-Liouville problem 

( ) ( ) ( )xy x e y x y xλ′′− + = ,           (46) 
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with conditions (1) (0) ( ) 0y y π= =  and (2) 

(0) ( ) 0y y π′= = .  The uniderivative Simpson method 

(USM)[8] and and Numerov’s method (NM) [13] have been 
used to solve this Sturm-Liouville problem. The numerical 

results calculated by the Eq. (42), and the relative errors 
between the present results with 12N =  and the exact 
results are listed in the Table 4 for two cases. Our results of 

12N =  coincide well with the exact solutions. 

Table 4. Numerical results of eigenvalues and the relative errors with 12N = . 

k  (0) ( ) 0y y π= =  (0) ( ) 0y y π′= =  

 Exact [8] Present Relative errors Exact [13] Present Relative errors 

1  4.8966694 4.8966693800 4.08
910−×  4.89571 4.8957132596 6.66

710−×  

2  10.045190 10.0451899007 9.89
910−×  9.99955 9.9995498471 1.53

810−×  

3  16.019267 16.0192679511 5.94
810−×  15.4685 15.4685140327 9.07

710−×  

4  23.266271 23.2662808698 4.24
710−×  21.0371 21.0371567754 2.70

610−×  

 

5. Conclusions 

This paper presented a simple and efficient method to 
determine the eigenvalues of the second-order 
Sturm-Liouville problem. Instead of directly solving the 
differential equation, we transform the governing equation to 
the corresponding Fredholm–Volterra integral equations with 
kinds of boundary conditions. By expanding the unknown 
functions into the shifted Chebyshev polynomials, a system of 
linear algebraic equations will be obtained, where the lower 
and higher eigenvalues can be effectively computed from the 
characteristic polynomial equations. Compared our results 
with the exact solutions, the accuracy and effectiveness of the 
introduced method have been confirmed. 
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