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Abstract: The study simulated the transmission dynamics of Ebola Zaire virus using two models: a modified SIR model 

with the understanding that the recovered can become infected again and the infected die at a certain rate and a quarantine 

model, which ascertained the effects of quarantining the infected. Furthermore, an appropriate system of Ordinary Differential 

Equations (ODE) was formulated for the transmission and the method of linearized stability approach was used to solve the 

equations. Stability analysis of both models indicated that, the Disease Free Equilibrium (DFE) states of the models were 

unstable if they exist. These equilibria states showed that the disease can easily be triggered off, so there is need to be 

constantly alert and effective preventive measures put in place against its spread. In addition, numerical experiments were 

carried out with the models' parameters assigned specific hypothetical values and graphs were plotted to investigate the effect 

of these parameters on the transmission of the disease. The results showed that, with the nature of Ebola Zaire virus, 

uncontrolled transmittable contacts between the infected and the susceptible can lead to a very serious outbreak with high 

mortality rate, since no immunity and drugs at moment. However, with effective quarantining structures put in place such 

situation can be better managed and outbreak controlled. 
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1. Introduction 

The Ebola virus is a virological taxon species of the genus 

Ebolavirus. The genus Ebolavirus belongs to the virus family 

Filoviridae (filovirus) along side with genus Marburgvirus 

and genus Cuevavirus [1]. Genus Ebolavirus comprises five 

distinct species according to World Health Organisation 

(WHO): Bundibugyo ebolavirus (BDBV); Zaire ebolavirus 

(EBOV); Reston ebolavirus (RESTV); Sudan ebolavirus 

(SUDV) and Taï Forest ebolavirus (TAFV) 

The Ebola virus or Zaire ebolavirus (EBOV) specie which 

first appeared in 1976 in Yambuku, Democratic Republic of 

Congo is a deadly viral that causes an extremely severe 

hemorrhagic fever in humans and other primates [2]. This 

Ebola Hemorrhagic Fever (EHF) is characterized by high 

fever, vomiting, diarrhoea and in severe cases, organ failure 

and unstoppable bleeding (virus shutting off the blood's 

ability to clot) and as a result, patients often suffer internal 

and external hemorrhaging. Many die in an average of 10 

days [3]. The disease can cause mortality rates up to 90 

percent of those individuals who contract the disease [4]. So 

far, no cure or vaccine exists for Ebola Hemorrhagic Fever 

and over 10,994 people [5] in West Africa have died in the 

current and worst Ebola outbreak which started in Guinea 

sometime in December 2013, but was not detected until 

March 2014, [6] after which it spread to Liberia, Sierra 

Leone, Nigeria and Senegal. 

The virus’ exact origin, location and natural habitat is 

considered to be within the region's fruit bat population, with 

the fruit bats (of the Pteropodidae family) carriers of Ebola, 

but unaffected by it [7]. Although, non-human primates have 

been a source of infection for humans, they are not thought to 

be the reservoir but rather an accidental host like human 

beings [4]. Humans can catch the virus from animals through 

close contact with infected animals' blood, secretions, organs 

or other bodily fluids, although transmission between natural 

reservoirs and humans is rare. Outbreaks are often traceable 

to a single index case where an individual has handled the 
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carcass of a gorilla, chimpanzee, or duiker or the bushmeat 

trade (the catching and eating of wild animals, including 

primates such as gorillas and chimpanzees) [8]. Once in the 

human population, transmission through physical contact 

with body fluids, secretions, tissues or semen from infected 

persons becomes highly possible especially within families, 

hospitals, and during some mortuary rituals where contact 

among individuals becomes more likely. 

These mortuary rituals, which seem to be a common 

practice within the West Africa sub-region, is one of the 

factors affecting the fight against the disease. Others include; 

the uncooperative nature of the citizens (believing the disease 

is a hoax or that the hospitals are responsible for the disease); 

traditional/cultural practice regarding the deceased i.e 

watching of dead bodies during burial rituals; extreme 

poverty and dysfunctional healthcare system. These factors 

and others have lead governments of these countries to 

embark on the following steps in order to reduce its spread: 

public awareness against burial rituals; banning of large 

gatherings, closing of borders; increased surveillance at all 

entry points to the country; conducting tests on people 

arriving in the country; placing worst affected areas under 

quarantine etc. Assistances in the form of medical staff 

support and funds have been given to some of the countries 

in order to strenghten the fight against the disease: Economic 

Community of West African States (ECOWAS), US Centers 

for Disease Control and Prevention (CDC) and European 

Commission have donated funds and mobilised personnel to 

help counter the outbreak. Charities including Médecins Sans 

Frontières, the Red Cross [9] and Samaritan's Purse are also 

working in some of these areas. 
This outbreak has had significant economic impacts on the 

people apart from the loss of lives. Markets and shops are 

closed due to travel restrictions, cordon sanitaire, or fear of 

human contact leading to loss of income for producers and 

traders; adverse effects on tourism and reduced airline traffic 

leading to some airlines suspending flights to these areas. 

Others are; reduced agricultural activities and direct/indirect 

strain on finances of governments of some affected countries 

e.g, Sierra Leone using Treasury bills to fund the fight 

against the virus, etc. 

By nature, Ebola is highly contagious and deadly and there 

are no drugs or proven Ebola virus-specific treatment at 

moment. Ebola can kill up to 90% of patients, although in 

this outbreak, the death rate has dropped below 50%, which 

gives credence to the fact that early detection and good 

medical care could be synonymous to possible recovery, 

which is not permanent since with no immunity, the 

recovered become susceptible again. WHO estimated about 

20,000 possible total cases for this outbreak but currently 

there are over 26,000 reported cases of which over 10,994 are 

dead. This is the first Ebola outbreak to reach epidemic 

proportions: past outbreaks were brought under control 

within a few weeks [5]. 

In the light of the foregoing, there is therefore an urgent 

and serious need to have coordinated responses from all 

angles in other to combat the disease effectively. As part of 

this coordinated approach, is the need for mathematical 

modelling of the disease. According to [10], a mathematical 

model is an equation, or set of equations, that describes some 

physical problem or phenomenon that has its origin in 

science, engineering, or some other areas while mathematical 

modelling is the process by which we obtain and analyze the 

model. Mathematical modelling of diseases is essential in 

epidemiology and some infectious diseases such as measles, 

malaria, chickenpox, aides and gonorrhea have been 

modelled in the past [11]. Others also modelled include 

SARS, avian flu and HIV [12]. 

Mathematical models have been important tools in 

analyzing the epidemiological characteristics of these 

infectious diseases since the pioneer work of Kermack and 

McKendrick (1927) [13]. Some of the well-known models 

for the transmission dynamics of some diseases include: 

Ronald Ross model for control of malaria [12]; Capasso and 

Pareri-Fontana (1979) model for the 1973 cholera epidemic 

[14]; Hethcote and Yorke (1984) model for the spread and 

control of gonorrhea [14] etc. 

This work will therefore model the dynamics: transmission, 

severity and prevention mechanism of Ebola-Zaire strain 

(Zaire ebolavirus (EBOV)). This strain has had the most 

outbreaks of the four strains that cause disease in humans and 

it is the deadliest. It is responsible for the current outbreak in 

Guinea, Sierra Leone, Liberia, Nigeria, Mali, Senegal, Spain 

and United States where over 26,000 cases and 10,994 deaths 

have been reported [1]. This Ebola-Zaire strain, according to 

[8,5] has had an overall survival rate of roughly 30% and 70% 

mortality rate since it was first discovered in 1976. 

Significanctly, the study will enlighten governments of 

various countries, International Organizations, Non-

Governmental Organization (NGOs), health workers and the 

public on the transmission dynamics of the disease. More 

importantly the study will play a key role in policy making at 

different levels of governance as health workers will be steered 

up to urgently come up with a vaccine that will cure or reduce 

the spread of the disease having known the devastating effects 

of the disease. It will finally encourage governments of 

affected countries on the need for effective quarantining 

structures to enable control of the spread of the disease. 

2. Purpose of the Study 

The main focus of this study was to model mathematically 

the transmission dynamics of Ebola Zaire Virus and 

specifically: 

1. To simulate the transmission dynamics of the disease 

using a modified SIR model of [2]. 

2. To refine this model to include a quarantined group and 

equally use it to simulate the transmission dynamics of 

the disease to ascertain the effects of quarantining 

3. To investigate the existence and stability of the 

equilibrium states of the two models: modified SIR 

model and the model with quarantine. 

4. To numerically analyze both models with the aim of 

using hypothetical data for predictions 
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3. Model Derivation 

3.1. The Modified SIR Model 

This Modified SIR Model of [2] is different from a typical 

SIR model in two ways: 

(i) This model will be a lethal i.e. fatal since there is no 

cure or immunity and the infected will die at a certain 

rate unlike the typical SIR model which is non-lethal. 

(ii) The Recovered group will not remain immune to the 

infected unlike the general SIR model where the 

recovered group obtains immunity from the disease 

after they have been infected. 

Other assumptions are: 

� The total population of people used in this model is 

randomly distributed over area, allowing a constant to 

be defined for the contact made between the susceptible 

and the infected. 

� The virus always kills about δ percent of the people it 

infects, the survivors (100 - δ) percent will become the 

recovered group. 

� Individuals that recover are given no immunity. 

� The population involved stays constant (no births or 

unrelated deaths). 

Based on the above, we consider four classes: 

� Susceptible:(S) 

� Infected:(I) 

� Recovered:(R) 

� Deceased:(D) 

The susceptible (S) becomes infected at rate “α” when they 

come in contact with the infected so there will be depletion 

of the population. That is, the change in population is equal 

to -αSI. In addition, individuals from the recovered group 

become susceptible again at a certain rate “�”, to give �R. 

Thus, we have: �′ = −��� +  �
 

The infected group begins with adding what was just 

removed from the susceptible population, αSI and then a 

reduction in two ways i.e. people can either recover or they 

are killed by the virus. They recovered from the virus at rate 

“β” and are killed at rate “δ”. Thus, we have: �′ = ��� −  �� − �� 

The recovered group is increased by those that recovered 

from the virus and reduced by the number of people that join 

the susceptible group at rate “�”. This can be expressed as: 
′ = �� −  �
 

While the deceased group is the final group. Its population 

is defined by the number of people that are killed by the virus 

at rate “δ”. Thus, the equation is given as: 
′ = �� 

Therefore, the modified model comprises of the following 

system of differential equations: 

� ������� � ��������� ����� ������ �������
�                                    (1) 

Where α = the rate of infection, �  = the rate of 

susceptibility 

β = the rate of recovery δ = the rate of death 

�� =  ��� !� , �′ =  �#� !� , 
� =  �$� !�  and 
′ =  �%� !�  

Here, it is important to note that, the dependent variables: 

S, I, R and D count people in each group as a function of 

time and not representing each group by a fraction of the 

population. Therefore, the transmission process used is the 

mass action transmission and the transmission process for the 

nonlinear term αSI is given as: 

�& × �& × � =  ��� 

Where, N = Total number of Population, �&  = number of contacts by the infected per unit time 

sufficient to transmit the disease. �( is the fraction of these contacts that are with the 

susceptible. 

The model is illustrated below: 

 

Figure 1. The SIRD model flow chart: Basic model with death and the 

recovered becoming susceptible. 

3.2. The Model with Quarantine 

In order to contain the outbreak, we decided to model the 

effects of partial quarantine of the infected individuals. In 

this model, we assume that quarantined individuals are 

removed from the population and cannot infect new 

individuals while they remain quarantined. Thus, the changes 

to the modified model include: 

� The quarantined area only contains members of the 

infected population (entering at rate ω) 

� The early detected infected individuals may have 

temporal recovery after treatment and be moved to the 

recovered group at rate �. 

� Those not discovered early or failed to respond to 
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treatment may die and be moved to the deceased group 

at rate �. 

Therefore, the model equations are: 

) ������� � ����� ����*� +�� *���+��+ ��� �+������ �+
�                                    (2) 

Where � = rate of infection � = rate of recovery � = rate of susceptibility ω = Rate of quarantining � = Rate of death 

�� =  ��� !� , �′ =  �#� !� , ,� =  �-� !� ,  
� =  �$� !�   

and 


′ =  .
�/!./  

The model is illustrated in the figure below: 

 

Figure 2. Model flow diagram for the Model with Quarantine. 

4. Model Analysis 

4.1. Existence and Uniqueness Theorems of First Order 

ODE 

In this section, the following theorems will be relevant: 

Given the general first-order ODE:     y� =  F�x, y!               y�x3! =  y3                     (3) 

Theorem 4.1.1 (Existence): Suppose that F�x, y! is a 

continuous function defined in some region R ={�x, y!: x3 –  δ < : < x3 +  δ , y3 –  ε < < < y3 +  ε } 

containing the point (x3 , y3 ). Then there exists a number �=  
(possibly smaller than δ) so that a solution y =  f�x! to (3) is 

defined for x3 – δ= < : < x3 +  δ=. 

Theorem 4.1.2 (Uniqueness): Suppose that both F�x, y! 

and 
? @A F�x, y! are continuous functions defined on a region R 

as in Theorem 4.1.1. Then there exists a number δB  (possibly 

smaller than δ= ) so that the solution y =  f�x! to (3), whose 

existence was guaranteed by Theorem 4.1.1, is the unique 

solution to (3) for x3 – δB < : < x3 + δB . 
Theorem 4.1.3 (Cauchy-Lipschitz theorem (Existence and 

Uniqueness of the solution)): 

Given an initial value problem, 

  Cx′�t!  =  f�x�t!, t!x�0! =  x3 �                            (4) 

Let U ⊂ RH be an open set and f ∶  U ×  [0, T]  → RH be a 

continuous function which satisfies the lipschitz condition 

|f�x=, t! −    f�xB, t!| ≤ M|x=  −  xB|    ∀ �x=, t!, �xB, t! ∈  U × [0, T]    (5) 

(where M is a given constant). If x3 ∈  U , then for some 

positive δ  there is a unique solution x: [0, δ] → U  of the 

initial value problem �4!. A similar statement holds if [0, T] 

is replaced by [-T, 0] or [-T, T] (the interval of existence 

becomes then, respectively, [–  δ, 0] and [–  δ,δ]). 

Theorem 4.1.4: According to [11]: Suppose the Jacobian 

Matrix J corresponding to an n-system of differential 

equations has eigenvalues T=, TB, … , TV , for a trivial steady 

state equilibrium at �0, 0, . . . ,0! , then the stability of the 

solution is determined as follows: 

(i) All real parts are less than zero i.e. if Re �TX! < 0 for 

all Y = 1, 2, … . \  then there is Uniform and 

Asymptotic Stability (UAS). 

(ii) If Re �TX! ≤ 0 for all Y = 1, 2, … . \ and the algebraic 

multiplicity equals the geometric multiplicity, 

whenever TX = 0  for any Y  then there is Uniform 

Stability (US). 

(iii) At least one of the eigen values has real part greater 

than 0 i.e. if TX > 0  for at least one Y  and the 

algebraic multiplicity is greater than the geometric 

multiplicity whenever TX = 0 for any Y, then there is 

instability. 

4.2. Dynamics of the Models (Modified Sir Model and the 

Quarantine Model) 

A straight forward computation shows that models (1) & 

(2) are continuous and Lipschizian in ℝ_̀. From the existence 

and uniqueness of solution of the ordinary differential 

equation as contained in above theorems (4.1.1 – 4.1.3), the 

solution of both models with positive initial conditions exists 

and are unique. Here, we can see for the first differential 

equation in both models, that it has a solution, which is also 

unique, i.e S� = −αSI +  γR with positive initial conditions. 

In this case, both the function F�t, S! =  −αSI +  γR and 

its partial derivative 
? ?e F�t, S! =  −αI are defined and 

continuous at all points (t, S). The theorem guarantees that a 

solution to the ODE exists in some open interval centered at t3  and that this solution is unique in some (possibly smaller) 

interval centered at t3 . 
NB: This is also true for the remaining equations in both 

models. 
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We can also check for conformity with the Lipschitz 

condition: 

Considering the first differential equation in both models, 

we’ll try to show that �� = −��� +  �
  satisfies the 

Lipschitz condition, 

i.e for f��, /! = −��� +  �
, then, |f�s=, t! −    f�sB, t!| ≤ h|�= − �B|, ∀ �s=, t!, �sB, t!  ∈  U × [0, T] 
So we have, |�−��=� +  �
! −  �−��B� +  �
!| = |−��=� +  �
 + ��B� −  �
| = |−��=� + ��B�|  = ��|�−1!��= − �B!| ≤ ��i|−1|��= − �B!i ≤ ��|�= − �B| ≤ h|�= − �B| 
Where h is a constant and h = ��. 

This shows the Lipschitz condition for the first differential 

equation in both models is true and is also true for the 

remaining equations in both models. So, solution exist for 

each model and it is unique. 

4.3. Existence and Stability of the Disease Free Equilibrium 

(DFE) of the Models 

4.3.1. The Modified SIR Model 

At the equilibrium, the ODEs satisfy: � ′ + �′ + 
′ + 
′ = 0 , since � + � + 
 + 
 = &  and &  is constant (Here, we 

assume that the outbreak has a short timescale, then we can 

ignore birth and background death rates, i.e birth rate = death 

rate = 0). Equation (1) is then set to zero. Thus, we have 

j ���� � ���k���� ������k��� ���k���k
�                                      (6) 

Solving equation (6) above, we have the Disease Free 

Equilibrium (DFE) in the form: ��l, � l, 
m, 
n! =  �& − �3, 0, 0, �3! ∀ �3 ∈ 
 ∩  p0, &q 
Here, for instance the equilibrium ��l, � l, 
m, 
n! = �&, 0, 0, 0!  is of the above form where �3 = 0 and this is 

dependent on the initial conditions. 

In evaluating the stability of the Disease Free Equilibrium 

(DFE), we take the Jacobian Matrix of model (1). However, 

we notice that the differential equation in “D” is uncoupled 

from the other three differential equations of the set and we 

also see that lim →∞ ��/! = 0 , since the population has a 

fixed number &. As such, the fourth equation can be derived 

from the first three. Thus, we consider the Jacobian for only 

the first three equations. That is, 

u��, �, 
! =  v−�� −�� ��� �� − � − � 00 � −�w  

and the Jacobian at the DFE state is given as: 

u�& − �3 , x, x! = y0 −��& − �3! �0 ��& − �3! − � − � 00 � −�z  

Furthermore, we have 

det �u − T�! =  −T��−� − T!���& − �3! − � − � − T!! 

and equating our characteristic equation to zero to evaluate 

for T, we have 

det �u − T�! = 0 

i.e −T��−� − T!���& − �3! − � − � − T!!  = 0 

Here, it follows that the characteristics equation always 

has a root with positive real part, that is, one of the 

eigenvalues has a real root > 0 and this is true for all �3 ∈
 ∩  p0, &q . Hence, from theorem 4.1.4, the Disease-Free 

Equilibrium (DFE) is always unstable. 

4.3.2. The model with Quarantine 

At the equilibrium, the ODEs satisfy: � ′ + �′ + ,′ + 
′ +
′ =  0, since � + � + , + 
 + 
 = & and & is constant. We 

then set (2) to zero. Thus, we have 

) ���� � ���k����*��k*���+��+�k �+����k�+�k
�                              (7) 

Solving equation (7) above, we have the Disease Free 

Equilibrium (DFE) in the form: 

(�l, �,n  ,,n  
,n  
n! =  �& − �3, 0, 0, 0, �3! ∀ �3 ∈ 
 ∩  p0, &q 
In evaluating the stability of the Disease Free Equilibrium 

(DFE), we take the Jacobian matrix of model (2). However, 

we notice also that the differential equation in “D” is 

uncoupled from the other four differential equations of the set 

and that lim →∞ ��/! = 0, since the population has a fixed 

number &. As such, the fifth equation can be derived from 

the first four. Thus, we consider the Jacobian for only the 

first four equations. That is, 

u��, �, ,, 
! = {−�� −�� 0 ��� �� − | 0 00 | −� − � 00 0 � −�} 

and the Jacobian at the DFE state is given as: 

u�& − �3, 0,0,0! = ~��
�0 −��& − �3! 0 �0 ��& − �3! − | 0 00 | −� − � 00 0 � −����

�
 

Furthermore, we have det �u − T�! =  −T����& − �3! −ω − T!�−� − T!�−� − � − T!!  and equating our 
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characteristic equation to zero to evaluate for T , we 

have −T����& − �3! − ω − T!�−� − T!�−� − � − T!!  = 0. 

It follows from above that the characteristics equation 

always has a root with positive real part, that is, one of the 

eigenvalues has a real root > 0 and this is true for all �3 ∈
 ∩  p0, &q . Hence, from theorem 4.1.4, the Disease-Free 

Equilibrium (DFE) is always unstable. Thus, even at the DFE 

state the tendency for the disease to be triggered is there. 

5. Results 

5.1. Numerical Experiments 

Euler’s method with the aid of a Matlab program was used 

to approximate and simulate the solutions to the ODE’s. With 

the obtained data, graphs were plotted to investigate the 

effect of some parameters on the transmission dynamics of 

the infection. 

NB: Some of the parameters were computed as follows: 

α = rate of infection: α = k/N, where k = average number 

of adequate contacts made by an infected individual per time 

and N = total population size 

δ = rate of death: approximated average mortality rate of 

the disease from 1976 before current outbreak and β = rate of 

recovery (1 - δ) 

5.2. Experiment 1 

When there is high rate of transmittable contacts between 

infected and susceptibles: α = 3.15 × 10��; β = 0.27; γ = 

0.23 and δ = 0.73 

 

Figure 3. The Modified Model with relatively high contact. 

From the graph (Fig. 3), we see a sudden drop of the 

susceptible group. The infected also begins to rise even to 

optimal point where about 39% of the population are infected 

within few days and then declines. The number of diseased 

also begins to rise due to the upward movement of the 

infected. The recovery group hits its peak at around 20,000 

people but later begins to approach zero like the infected 

group even as the last victim either dies or joins the recovery 

group. Here, the virus took a very high percentage of the 

population say about 78%. This could be horrific and 

portends a high epidemic situation but for the fact that Ebola 

virus spreads primarily through contacts and contaminated 

medical equipments and not an airborne disease or some 

other easily communicable disease, limits its ability to spread. 

Otherwise, this could spell doom. 

5.3. Experiment 2 

When transmittable contacts between infected and 

susceptibles is slightly reduced: α = 2.36 × 10��; β = 0.27; γ 

= 0.23 and δ = 0.73 

Fig. 4 shows relatively similar curves but with little 

improvement over Fig. 3 because of the relative decline in 

the number of contacts made by the infected group. Here, we 

have a gradual dropping of the susceptible group and a 

reduced peak of the infected (about 31% of population). The 

peak of the recovered group is not has high as in Fig. 3, 

however the deceased group is slightly lower than in Fig. 3, 

which is a mark of improvement. As the infected and 

recovery approached zero, susceptible increased higher as 

compared to Fig. 5 at the same stage. However, the death 
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level is relatively still high, so a better option will be further 

reducing the contact of infected by quarantining, in addition 

with medical support (see Fig. 5). 

 

Figure 4. The Modified Model with slightly reduced contact. 

5.4. Experiment 3 

When infected are quarantined at relatively high rate i.e rate of transmittable contacts between infected and susceptibles is 

remarkably reduced: α =  8.7 × 10��; β = 0.27; γ = 0.23; | =  0.75 and δ = 0.73 

 

Figure 5. The Modified Model with Quarantine. 

The result displayed in Fig. 5, shows a more interesting 

result than in Fig. 4 and Fig. 3. Here, the susceptible group is 

reducing very gradually and the infected group at its peak is 

quite low, about 6.3% of the population. At about that time, 

the quarantined group is a little lower in population than the 

infected. The recovered group is lower than both the infected 

and the quarantined and they all approach the zero mark 

together. The deceased group is relatively low as compared to 
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Fig. 3 and Fig. 4 at about same time. Therefore, a greater 

percentage of the population is alive (i.e mortality rate is 

low), though still susceptible. 

6. Discussion 

Ebola virus by nature is very infectious and is fatal since 

there is no cure or immunity as of moment. From the 

numerical experiments carried out, it was observed firstly, 

that with high rate of transmittable contacts between infected 

and susceptible the effect was catastrophic. Here the death 

rate was very high, almost about 78% of the population died. 

Although this figure may be very different from reality but 

one incontestable fact is that, the level of fatality given any 

uncontrolled Ebola virus outbreak can always be worrisome. 

The experiments also revealed a situation where the contact 

was slightly reduced (from the previous high contact) in 

order to ascertain effects of varying the transmittable contact 

level and the result was similar to the previous one with 

slight reduction in the mortality level. 

This in effect showed that the rate of contact is directly 

proportional to the mortality rate. Finally, the experiments 

also showed that the most likely way to curtail the spread and 

its fatal effects is the introduction of an aggressive quarantine 

system, which ensured very limited transmittable contacts 

between infected and susceptible. Although, aggressive 

quarantine system may sometimes be difficult in practice, 

due to some prevailing factors: economical, social or political 

but it is still the best option to be considered in managing the 

high fatality rate of Ebola outbreak at least with the no drugs 

or vaccine situation. 

Furthermore, these results assumed that the timescale of 

the outbreak was short, so that, the natural birth and death 

rates could be ignored, making population (N) to be constant. 

7. Conclusions 

An Ebola outbreak mostly in developing nations could be 

a real threat to peaceful existence. As demonstrated by our 

mathematical models it is seen that, an uncontrolled 

transmittable contacts between the infected and the 

susceptible can be catastrophic (high mortality rate), since no 

immunity and drugs at moment. This is evidence in the 

current outbreak, which has majorly affected the countries of 

Liberia, Sierra Leone and Guinnea and recorded the worst-

case scenerio (highest dead rate, much more than the total of 

all death since the discovery of the virus in 1976). However, 

a better management option as revealed by the model is an 

aggressive quarantine system (with medical support), which 

will ultimately reduce the transmittable contacts, since by 

nature Ebola is highly infectious. Mathematical modelling is 

very essential in understanding and managing the outbreak of 

any disease. In the light of this work and its scope, where we 

assumed natural birth and death rates to be zero, i.e 

population (N) to be constant, then we will recommend 

further research where there is a constant flow of new 

members into the whole population per unit time with 

infective or susceptible fractions. So N is no longer constant, 

it varies with time and even the rates; rates of infection, 

susceptibility etc become funtions of time. 
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