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Abstract: Finding a numerical solution of linear algebraic equations is known to present an ill-posed in the sense that small 

perturbation in the right hand side may lead to large errors in the solution. It is important to verify the accuracy of an approximate 

solution by taking into account all possible errors in the elements of the matrix, and of the vector at the right hand side as well as 

roundoff errors. There may be computational difficulties with ill-posed systems as well. If to apply standard methods such as the 

method of Gauss elimination to such systems it may be not possible to obtain the correct solution though discrepancy can be less 

accuracy of data errors. Besides, a small discrepancy will not always guarantee proximity to a correct solution. Actually there is 

no need for preliminary assessment whether a given system of linear algebraic equations is inherently ill-conditioned or 

well-conditioned. In this paper we consider a new approach to the solution of algebraic systems, which is based on statistical 

effect in matrices of big order. It will be shown that the conditionality of the systems of equation may change with a high 

probability, if the matrix distorted by random noise. After applying some standard methods, we may introduce the received 

"chaotic" solution is used as a source of a priori information a more general variational problem. 
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1. Introduction 

Many traditional direct and iterative traditional numerical 

methods for solving well-conditioned linear algebraic 

equations are known. However, these methods tend to be 

unstable if they are applied for solving ill-conditioned systems. 

The less known fact is that the commonly used methods of 

regularization of ill-conditioned problems can be applied to 

classical methods. We are going to describe this further. 

Let A be a square matrix that is ill-conditioned, and consider 

a system 

.Ax b=                    (1) 

Solving (1) can be a difficult task [1,2,3]. At first, we have 

to answer on the question: when is a matrix A ill-conditioned? 

Or, maybe, this question should be better rephrased as: are 

there any robust condition number estimators for A? It should 

be noted that the number of elements of a matrix may be very 

large, making it difficult to investigate system (1) on 

conditionality, because of the loss of calculations accuracy 

and significant computation time. 

Moreover, we can change value of spectral condition 

number 

1( )cond A A A−=               (2) 

because of scalable system (1). 

But it would be problematic to use the condition number as 

the criterion of quality of ill-conditioned system because of 

computational difficulties. Besides, complexity of calculation 

in (2) depends on an assessment of norm of the inverse matrix 
1A−

, which may result in computational errors. Thus, it 

makes sense to use the number (2) only if it can be really 

computed with a fixed accuracy. The above definition of 

condition number was exposed to criticism in literature, while 

other options of condition number were discussed in [4] and 

other papers. 

At the current stage of technological progress, the systems 

of the linear equations can be conveniently solved via 

commercial software like MATLAB, MATHEMATICA, 

MAPLE, etc. Popularity of such software is explained from its 

ability to carry out calculations both on a personal computer 

and on a supercomputer, allowing parallelization of 

calculations with controlled accuracy [5]. 

On the other side, there are many systems of linear 
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equations that can’t be solved with the help of commercial 

software, which gives for them irregular, "chaotic" solutions. 

The question is about whether it is possible to consider (1) as 

an ill-conditioned problem, as far as it is not solvable by 

standard methods of linear algebra? Or, in other words, 

whether it is possible to consider the system as ill-conditioned, 

without calculating its condition number? It would be also 

interesting to know, whether it is possible to avoid calculating 

the condition number at all. 

In further research on such systems, authors propose a new 

approach that doesn’t require calculation of the system 

conditionality. This approach is based on statistical 

phenomena of spectral properties of the perturbed matrix. 

If the system (1) is not well-conditioned, the concept of the 

solution has to be revised, if necessary, by considering the 

errors of b and A. That is, if Ax b=
⌢⌢ ⌢

, but 0x x µ− = >>⌢
, 

where b
⌢

is the perturbed value of right hand side vector, A
⌢

- 

perturbed matrix , x
⌢

 is the perturbed solution, x is the 

original solution, and µ is the residual error. The inversion of 

the perturbed matrix can be correctly calculated because the 

perturbed matrix is well-conditioned as it will be shown below. 

However, without using some additional tricks, perturbing the 

solution is useless in classic approach. At this point a general 

statement can be made: if the matrix (operator) of A
-1

 does not 

exist, the inverse perturbed matrix exists with a high 

probability. A. N. Tikhonov and others [1,2,6] developed a 

theory of such ill-posed problems. The focus of his method is 

to choose the compact class and find the solution with 

minimal norm, taking into account the errors in the input data. 

It should be noted that the relevance of the task of solving 

ill-conditioned systems does not raise doubts: as such systems 

occur in numerous engineering applications: recovery of 

images, spectral analysis, digital signal processing, etc. As we 

mentioned, solutions obtained using standard programs of 

computer mathematics can be chaotic. We can also try to get 

the solution by variational algorithms, but their 

implementation takes much more time than standard methods 

of Gauss elimination[1,2]. Again the question remains on 

whether the obtained solution is meaningful or not. 

Now, let us consider a textbook example of solving the 

algebraic system with Hilbert's matrix 

1
( , ) , 1.. , 1..

1
H i j i N j N

i j
= = =

+ −
. 

We define a vector in the right hand side for function 

1x− +  on interval from -1 to +1, multiplying a matrix H by 

the vector with components1 1 2( 1) / ( 1) , 1..i N i N− − + − − = . 

For dimension N=400 calculations the explicit Linear Solve 

program of the Mathematica package demonstrates instability 

of the solution. To get the stable solution, it is required to keep 

560 digits at least. 

From this example, we can draw a conclusion that standard 

programs may provide reliable solutions only in a case when 

the elements of the matrix and the vector in the right hand side 

are known precisely, or when they can be found with 

controlled accuracy. 

Observe that using of Least Squares (built-in Wolfram 

function ) method gives us a stable solution of the problem 

with Hilbert matrix, when N=2000 and greater. However, the 

Least Squares method could be efficient as far as there are no 

errors in the right hand side. If we perturb the right hand side 

following a hypothesis about the additivity of errors, the 

known methods of computational mathematics usually give us 

unstable solutions and are therefore unsuitable. Least Squares 

and the pseudo-inverse methods also lead to the irregular 

solution. Thus, there are the main questions to answer in this 

paper: 

1. How to calculate correct value of the condition number? 

2. How to get the correct solution of an ill-conditioned by 

using standard programs of computer mathematics? 

3. How to increase the accuracy of the classical solution of 

system of the algebraic equations? 

The idea of the present article is that an approximate 

solution obtained via a classical method could be used to solve 

the associated variation problem. Our assumption is based on 

the fact that classical solutions, even chaotic, nevertheless are 

a source of a priori information and they can form a set of 

possible solutions. 

2. Conditionality of System with the 

Noisy Matrix 

Consider a general problem of solving an ill-conditioned 

system of linear equations when the right hand side and the 

matrix of the system are subjected to a perturbation. Observe 

that the spectral properties of the matrix tend to improve as the 

condition number of an ill-conditioned noisy system decreases 

with the higher noise amplitude [7]. Thus the condition 

number of a real-valued random matrix increases as 

log[ ] 1.537N + , where N - dimension of a matrix [8]. In Fig. 

1a the calculated condition numbers of a random matrix are 

displayed, from where we can observe that these numbers with 

a high probability do not reach critical values. 

 

Fig. 1a. The condition number of pseudorandom NxN matrices. 

According to the theoretical results of [7] the norm of the 

inverse noise contaminated matrix in an ill-posed problem and 

its condition number can be easily calculated. A an example, 

Fig. 1b shows dependence of the Hilbert matrix condition 
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number on the noise amplitude in the interval ( )6 510 ,10 .− −
 

The tolerance ( )6 510 ,10− −
 is standard for physical 

experiment errors. 

 

Fig. 1b. Condition number of Hilbert Matrix of size1000x1000 is under small 

perturbation. 

These calculations show that with a high probability an 

ill-conditioned system becomes well-conditioned under a 

perturbation. Expression "with a high probability" means that 

we have to repeat perturbation in the case of violation of Fig 

1b dependence. Since noise is always present at measurements, 

it represents a natural addition to the exact matrix and 

improves the system conditionality. After perturbing the right 

hand side of the system in the previous example with the 

Hilbert matrix, with noise amplitude 10
-7

, the Linear Solve 

(Mathematica function) method gives us an irregular solution. 

Other methods also yield the results indicating on chaotic, 

irregular properties of the solution. Nevertheless, the residual 

error of such solution 52.7 10µ −= ⋅ indicates that all 

calculations are made keeping accuracy. Thus, we may claim 

the solution to be "chaotic", but in reality, it is the exact 

classical solution of the perturbed system. Such solution 

cannot satisfy us though, as according to the results [7], the 

system has to be well-conditioned with high probability. We 

will notice that the methods of smoothing do not reveal the 

hidden solution if they don't use a priori information about 

errors. Thus it is necessary to correct the obtained solution 

within our knowledge on errors. We will note again that the 

noise contamination of a matrix is made forcibly for the 

purpose of improvement of conditionality. 

There are also exist other effective ways to reduce condition 

number. For example, it makes sense to consider the extremal 

problem of finding the condition number of a matrix 

A A Dα= +
⌢

 on a set of diagonal matrices D with fixed α  

and constraint 1D ≤ . In this case, the perturbed solution can 

lose physical meaning. 

3. The Variational Algorithm 

Let us consider a perturbed system Ax b=
⌢⌢ ⌢

, where 

, ,x x x b b b A A Aδ δ δ= + = + = +
⌢ ⌢⌢

, and then let us add a vector 

Axδ  to the right and at the left sides of the original system 

Ax b= , and subtract the perturbed system. This gives us an 

inequality 

( ) maxA x x b A x h xδ δ σ− ≤ + ≤ +
⌢ ⌢

,   (3) 

where x
⌢

- is the solution of a classical method like Gauss 

elimination, σ - is the error value in the right hand side, h  - 

is the maximal absolute value of the matrix Aδ . 

Finally, consider a variation problem of conditional 

minimization for solution X : 

inf{ : ( ) max }X x A x x h xσ= − ≤ +
⌢ ⌢

,    (4) 

where  is a finite-dimensional norm, such as Frobenius 

norm, for example. 

We now claim that the problem (4) is not the same as 

original Tikhonov problem [1], because here, instead of b
⌢

we 

use the solution x
⌢

, that is correctly calculated from the 

perturbed system Ax b=
⌢⌢ ⌢

 which a well-conditioned with a 

high probability via Gauss elimination or other known 

methods. 

Now, let us consider another problem, when there is a 

matrix A  (perhaps already perturbed, but errors are 

unknown), and the right hand side is known only 

approximately. 

In other words, let be the equation Ax b= , b b σ− ≤
⌢

, 

where ill-conditioned A  , b
⌢

 are known, but b  is unknown. 

By using the solution from the equation Ax b=
⌢⌢ ⌢

 with 

forcibly distorted matrix A A Aδ= +
⌢

 the extremal problem 

can be formulated as 

inf{ : ( ) }X x A x x h xσ= − ≤ +⌢
ɶ .     (5) 

From the computing point of view, the problem (5) is much 

simpler, than (4), as the constraint h xσ + ɶ  in the right hand 

side can be obtained in advance. After noting that the 

perturbation Aδ  is known in this case, we can formulate the 

following extremal problem: 

inf{ : }X x Ax Ax σ= − ≤ɶ ɶ      (6) 

The formulated variation problems are solved by the 

standard N Minimize[f,x] function which minimize f 

numerically with respect to x (Wolfram company). 

4. Impementation 

We define the ill-conditioned matrix A  in which the 

elements on the main diagonal are (+1), all lower diagonals 

are zeros, and the diagonals above have elements (-1): 
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1

1,

0,

ii

ij

ij

a

A a i j

a i j

 =


= = − >
 = <

 

In the Mathematica language 10.1 such matrix N N×  is 

defined as: S [{{ _, _} 1, { _, _}/;parse Array i i i j→  

1},j i> → − { , },0]N N . 

In spite of the determinant value 1[ ] [ ] 1Det A Det A−= = , 

calculating the inverse matrix for N=512 becomes impossible 

because 510( ) 2cond A ≥ . If we perturb A by adding a random 

matrix Aδ  with an amplitude 0.01σ = , the inverse matrix 

can be calculated. The resulting solution from Linear Solve is 

shown in Fig. 2а. 

 

Fig. 2a. The classical “solution” from intentionally perturbed system. 

This solution coincides with its analytical model 

(square-wave pulse) in the majority of points, but it contains 

an essential error in the left hand side. If such classical 

solution doesn't satisfy the researcher, it can be further filtered 

by solving a varitional problem (5) or (6). The final solution in 

Fig. 2b. is close to its model in all points. 

 

Fig. 2b. Filtered variational waveform solution using the classical solution 

on Fig.2a. 

Note: In this example it is possible to compare the classical and extremal 

solutions, but for huge matrices the variation method demands expensive 

computing efforts. 

 

5. Well-Conditioned Systems 

To our knowledge, the question about finding well-founded 

solution estimates of well-conditioned systems in the presence 

of noise in the coefficients is insufficiently studied in the 

literature on such systems. We may also not expect to reduce 

the condition number for well-conditioned systems of a big 

order under noise perturbation On the contrary, there is high 

probability that the condition number of a noisy matrix will 

grow with growing noise amplitude and the dimension of 

system, as the norm of a random matrix grows. If the matrix of 

A is non-singular and 

1

( )

A

A cond A

δ
< ,                (7) 

then A Aδ+  is also non-singular (the theorem 2.3.1 [9]). For 

such systems the relative error of the solution at exact right 

right hand side b  is calculated according to a known 

inequality [9] 

( )

1 ( )

A
cond A

Ax

Ax
cond A

A

δ
δ

δ

 
  
 ≤

−
                (8) 

For an example let us consider Toeplitz matrix of dimension 

N=1000x1000 with cond = 696745 with the matrix A 

perturbed with noise amplitude by 
210−
. It is easy to check a 

condition of the above-mentioned theorem and an inequality 

(8). Value of the right part of (8) shows slow growth 

~ 1/ 50 N  depending on the dimension of system. 

If to consider the effect of noise on the condition number at 

N=1000, we see that the system with well-conditioned 

Toeplitz matrix becomes ill-conditioned. Also observe 

exponential growth of the condition number of the matrix

A Aδ+  though value of condition number 3028cond =  of a 

random matrix Aδ is small compared to the noisy matrix. One 

can notice violation of estimate (8) if the noise amplitude is 

more than h= 0.048 and inequality (7) is not valid. Then the 

problem of solving of the system may be interpreted as 

incorrect or it can be also solved by a variational method. 

Modeling on a grid N=500 showed reduction of error in the 

classical solution, with the subsequent 10 time improvement if 

the variation method is further applied. 

6. Conclusion 

In this paper, we have analyzed the ill-posed problems from 

classical and variational point of view. For a solution of 

ill-posed systems there are still no methods available that 

could be considered as the best or the final. The purpose of the 

current work was to create a method for solution of systems 

that does not take into account the study on conditionality. 

The two-step method proposed in this paper allows to get 

the numerical solution, and it has many advantages over the 

existing methods. If the algebraic system is well-posed, there 
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is no sense to apply the time consuming variation method, 

which demands expensive computing resources. The 

influence of approximate coefficients of a matrix on the 

solution error in this case is minimal. 

With ill-posed systems the situation is opposite, since the 

classical numerical methods are not applicable for such 

systems. If the classical solution is distorted and irregular, but 

the residual is small, it can be used as a source of a priori 

information to get the variational solution. 

The proposed forced noise contamination of matrices opens 

a new way to combine different classical algorithms and 

variation methods for ill-posed problems (Fig. 3). 

 

Fig. 3. Connection between classical and variational methods. 
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