
 

Applied and Computational Mathematics 
2015; 4(3): 162-173 

Published online May 28, 2015 (http://www.sciencepublishinggroup.com/j/acm) 

doi: 10.11648/j.acm.20150403.19 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

Taylor-SPH Method for Viscoplastic Damage Material 

Hajar Idder, Mokhtar Mabssout
* 

Laboratory of Mechanics and Civil Engineering, Faculty of Science and Technology, Abdelmalek Essaâdi University, Tangier, Morocco 

Email address: 
m.mabssout@fstt.ac.ma (M. Mabssout), idderhajar@gmail.com (H. Idder) 

To cite this article: 
Hajar Idder, Mokhtar Mabssout. Taylor-SPH Method for Viscoplastic Damage Material. Applied and Computational Mathematics.  

Vol. 4, No. 3, 2015, pp. 162-173. doi: 10.11648/j.acm.20150403.19 

 

Abstract: In this paper, we apply the meshless method Taylor-SPH to solve the propagation of shock wave in viscoplastic 

material coupled to damage. The equations are written in terms of stress and velocity. Taylor-SPH method is based on the Taylor 

series expansion of stress and velocity and on the corrected SPH approximation. Numerical stability of the method as a function 

of the smoothing length and the Courant number is analysed in the elastic case. The Taylor-SPH method is used to simulate 

localization in a one dimensional viscoplastic damage problem. The numerical results show that the Taylor-SPH method is able 

to model localization phenomena in viscoplastic damage material without lose of hyperbolicity of partial differential equations. 
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1. Introduction 

Finite Element Method (FEM) has been widely used to 

solve the Partial Differential Equations (PDEs) in Mechanic 

and Engineering problems. Despite of it great success, FEM 

suffers from some difficulties when dealing with problems 

where extremely large deformations, moving boundaries, 

discontinuities or crack propagation are involved. To 

overcome these difficulties, various meshless methods were 

developed in the 90s. The first meshless method is the 

Smoothed Particle Hydrodynamics (SPH). It was originally 

introduced by Lucy [1] and Gingold and Monaghan [2] to 

model astrophysical problems. The continuum is represented 

by a discrete set of particles. Each particle carries field 

variables such as velocity, stress, mass, density, etc. However 

original SPH suffers from some numerical difficulties: tensile 

instabilities [3] and lack of consistency [4]. Over the last 

decades, many corrections have been introduced to improve 

the consistency and the accuracy of the SPH solution [5,6,7]. 

To eliminate the tensile instability, Dyka et al. [8] have 

proposed to insert additional points called stress points into 

SPH formulation. Nevertheless, the SPH method still presents 

some difficulties: numerical damping and dispersion when 

dealing with dynamics and shock wave propagation leading to 

poor accuracy of the solution. In the previous work, we have 

used FEM to solve the problem of propagation of shock wave 

in an elasto-viscoplastic material; the results present small 

oscillations [9,10]. 

In this paper, we present a new meshless method 

Taylor-SPH [11,12,13] for solving the propagation of shock 

waves in solids. This meshfree method uses a two-steps time 

discretization algorithm by means of a Taylor series expansion 

and a corrected SPH method for the spatial discretization. In 

order to avoid the tensile instability, two different sets of 

particles are used. Both Lagrangian kernel and its gradient are 

corrected to satisfy the consistency conditions. 

The purpose of this article is to show that Taylor-SPH 

avoids the tensile instability, minimizes the numerical 

damping and dispersion and it performance to predict the 

damage of materials in dynamic conditions. To avoid the loss 

of hyperbolicity of PDEs during the damage evolution, 

viscoplastic law coupled with damage model is adopted. 

The paper is organized as follows. In the next section, the 

stress-velocity mixed formulation for dynamic problems in 

elasto-viscoplastic damage material is presented. In Section 3, 

governing equations are discretized using the proposed 

Taylor-SPH method. To assess the performance of the 

proposed algorithm, some numerical examples in 1D are 

described in Section 4 using elasto-viscoplastic and damage 

materials. 

2. Governing Equations 

The governing equations used in this work consist of the 

balance of momentum equations and a constitutive law 

describing material behaviour. For the sake of clarity of the 

method, this study is limited to one dimensional case. 

Neglecting the body forces and for small strains, the 
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governing equations can be written as follows. 

2.1. Balance of Momentum Equations 

For one dimensional bar of length L, the balance of 

momentum equation is given by  

            0 0
v

 in [ ,L] x ( ,T)
x t

σ ρ∂ ∂=
∂ ∂

 

(0, ) ( )                  (0, )v t v t t T= ∈          (1) 

( , ) 0                      (0, )v L t t T= ∈  

( ,0) ( )              0
o

v x v x x [ ,L]= ∈  

where σ  is the stress, v is the velocity and ρ is the density. 

2.2. Constitutive Law 

In this work, an elasto-viscoplastic law coupling with 

damage has been chosen to describe the material behaviour. 

2.2.1. Viscoplastic Law 

For an elasto-viscoplastic law, the relation between the 

stress and strain rates is given by 

vp

E
t t t

σ ε ε ∂ ∂ ∂= − ∂ ∂ ∂ 
                (2) 

where E is the Young’s modulus, ε is the total strain and vpε is 

the viscoplastic strain which is given by the Perzyna law [14]: 

( )     
vp f

f
t

ε γ ϕ
σ
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               (3) 

.  are the Macaulay brackets such that: max( ,0)x x=
and γ is a viscoplastic parameter. 

ϕ( f ) is a flow function chosen here as 
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N

o
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f

f
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N is a model parameter. In the case of Von Mises yield 

criterion, the function f depends only on the second invariant 

2
J of the deviatoric stress vector 

2
3f J=                    (5) 

The size of the yield stress f
o
 will vary according to a 

suitable hardening or softening law. Here it will be assumed a 

linear dependence on the equivalent deviatoric plastic strain
vpε . 

vp

of H
t t

ε∂ ∂=
∂ ∂

                (6) 

where H is the hardening modulus. 

Taking into account that
v

t x

ε∂ ∂=
∂ ∂

; the balance of 

momentum and constitutive equations can be written in 1D 

form as 

0
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      (7) 

The velocity of wave propagation is given by the 

eigenvalues of the matrix of the system (7): /c E ρ= ± , 

which remain real. 

2.2.2. Elasto-viscoplastic Damage Model 

The classical constitutive equation for isotropic damage 

model is given by [15, 16]: 

(1 ) eD Eσ ε= −                (8) 

where D represents the isotropic damage variable (0 1)D≤ ≤ . 

For the initial undamaged material D=0 and for completely 

failed material D=1. The damage evolution law used here is 

chosen as 

( )

o1     si  
( )

0                    

o

o

e
D

α κ κ κ κκ
κ κ

− − − ≥=  <
        (9) 

α  is a model parameter, oκ is the initial damage threshold 

and κ  is the viscoplastic strain. 

Differentiating eq. (8) with respect to time yields to 

(1 )( )
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vpD
D ε

κ
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∂
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As damage increases in the material, the viscoplastic part of 

the model must incorporate the damage parameter. By writing 

the Von Mises yield criterion (5) based on the effective stress, 

the flow function (4) becomes 

1(1 ) (1 )
 ( )

(1 )

N N

o o
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D f f f D f
f

f D f
ϕ
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   (11) 

The system of first order PDEs for 1D elasto-viscoplastic 

damage model is given by 

1
0

v

t x

σ
ρ
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In compact form 
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with 

0 (1 )
U      ;     A

1/ 0

E D

v

σ
ρ

− −   
= =   −   

 

and 

 
(1 )

S

0

e vpD
E D ε ε

κ
∂ − − + = ∂  

 

ɺ

 

It is important to notice that the eigenvalues of the matrix A 

are always real: 

1c Dλ = ± −                     (15) 

Therefore the system of eqs. (14) remains hyperbolic and 

the problem still well-posed during the damage evolution. The 

use of the viscoplastic law regularizes the damage model and 

avoids the PDEs to become ill-posed. 

3. Numerical Discretization: Taylor-SPH 

Meshless Method 

To solve the PDEs (14), the conventional SPH method 

applies first the SPH space discretization, obtaining a set of 

Ordinary Differential Equations with respect to time, and this 

set of equations is then integrated in time using one of the 

standard techniques such as Runge–Kutta schemes. In the case 

of discontinuous functions, such as shock waves, these 

standard methods present numerical problems, as numerical 

dispersion and diffusion, close to the discontinuities. To solve 

the problem of the shock waves propagation, we have used an 

alternative meshless method, Taylor-SPH [11,12,13] which 

consists of applying first the time discretization by means of a 

Taylor series expansion in two steps and thereafter the space 

discretization using a corrected SPH. 

3.1. Time Discretization in Two Steps 

Time discretization of Eq. (14) is carried out by means of a 

Taylor series expansion in time of U up to second order of 

accuracy: 

2 2
1

2

U U
U U

2

nn

n n t
t

t t

+ ∂ ∆ ∂= + ∆ +
∂ ∂

      (16) 

The first order time derivative of the unknown can be 

calculated using Eq. (14) 

U U
S
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A
t x
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          (17) 

The second order derivative with respect to time is given by 

2

2
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A
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First step: In order to obtain the time derivatives at the RHS 

of expression (18) at time t
n
, the values of the unknowns at an 

intermediate time t
n+1/2

 will be obtained first 
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U U S
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n
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x
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Using the computed value of U
n+1/2

, we have 
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Substituting (20) and (21) in equation (18), we obtain 

1/ 22
1/2 1/2

2
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+
+ +
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                     (22) 

Second step: Substituting now the expressions obtained for the first and second order time derivatives, (17) and (22), in the 

Taylor series expansion (16), we obtain the values of the unknowns at time t
n+1

: 

1/2

1 1/ 2 1/2U U U
U U S A A A

n n n

n n n n n nt
x x x

+
+ + +

 ∂ ∂ ∂= + ∆ + − −  ∂ ∂ ∂ 
                           (23) 

3.2. Space Discretization by the Corrected SPH Method 

In this section, a brief summary of the basic SPH method 

and its corrected form is presented. 

3.2.1. Discrete Approximation of Function 

In the SPH approximations, each function f(x) is 

represented by its integral approximation defined by: 
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( ) ( ') ( ' , ) 'f x f x W x x h dx
Ω

= −∫        (24) 

where the brackets denote a kernel approximation; W(x-x’, h) 

is the kernel function; h is the smoothing length that defines 

the size of the kernel support and (x;x') are the coordinates 

vectors. 

The Lagrangian kernel [17] is used here where the 

neighbours of influence do not change during the calculation, 

remaining h=ho as a constant value. 

In this work the B-spline function introduced by Monaghan 

and Lattanzio [18] has been used as the kernel function: 

2 3
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Being 
'

o o

x x r

h h
ξ

−
= = ; the scaling factor C is given by 

1

oh
, 2

15

7 ohπ  and 3

3

2 ohπ  in 1D, 2D and 3D respectively. 

In the SPH method, a continuum is represented by a set of 

particles, thus it is necessary to approximate the integral (24) 

in a discrete manner: 

1

N
J

I J IJ

J J

m
f f W

ρ=

=∑                 (26) 

where the summation subscript J denotes a particle label and 

runs over all particles N inside the domain, such that 

2I J ox x h− ≤ . WIJ = ( , )I J oW x x h−  denotes the value of 

the kernel, centred at node I at position J, Jm and Jρ  are the 

mass and density associated to particle J and ( )I If f x= . 

It is clear that for boundary particles, the consistency 

conditions are not satisfied when using approximation (26). 

Many works have been proposed in the past to improve the 

particle consistency of the SPH method [5,6,7]. The corrective 

kernel approximation of a function used here is [12]: 
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1

IJ

IJ N
J

IJ

J J

W
W

m
W

ρ=

=
∑

ɶ

                   (28) 

The approximating function (27) satisfies the zeroth order 

completeness. 

3.2.2. SPH Discrete Approximation of Derivatives 

The SPH integral representation of the derivative of a 

function f(x) is given by: 

( ) ( ') ( ' , ) ?of x f x W x x h dx
Ω

∇ = − ∇ −∫        (29) 

Taking into account that
1
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J
I IJ

J J

m
f W

ρ=
∇ =∑ , the discrete 

form of eq. (29) is: 
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The approximation (30) satisfies only the zeroth order 

derivative completeness condition. The corrected form of the 

kernel approximation for the derivatives is [12]: 
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The approximation (31) fulfills the first-order completeness 

condition. 

3.3. Taylor-SPH Discretization 

To perform the time discretization presented in Section 3.1, 

it is necessary the use of an auxiliary set of particles called 

virtual particles. These virtual particles will be interspersed 

among the real particles as it is shown in Figure 1. 

 

Fig. 1. Real and virtual particles in 1D. 
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Therefore, the time discretization of model equations is 

carried out in two steps: 

- In the first step, U
n+1/2

 is computed using (19) at the 

positions of the Nv virtual particles. 

- In the second step, U
n+1

 is computed using (23) at the 

positions of the Nr real particles. 

First Step: Applying the corrected SPH spatial 

discretization to equation (19), and using the corrected form 

for the SPH approximation given by (27) and (31), we obtain 

the vector UI at t
n+1/2

: 

1/ 2

1 1

U U S
2

Nr Nr
n n n n nJ J

I I J IJ I IJ IJ

J JJ J

m mt
W A U W

ρ ρ
+

= =

 ∆= + − ∇ 
 
∑ ∑ɶ ɶ  (33) 

where I = virtual particle; J = real particles such that 

2J I ox x h− ≤ . 

Second Step: Applying the corrected SPH spatial 

discretization to equation (23), and using expressions (27) and 

(31), we obtain the vector UI at time t
n+1

: 

1 1/ 2 1/ 2 1/2

1 1 1 1

U U S
Nv Nv Nv Nv

n n n n n n n n nJ J J J
I I J IJ I IJ IJ I IJ IJ I IJ IJ

J J J JJ J J J

m m m m
t W A U W A U W A U W

ρ ρ ρ ρ
+ + + +

= = = =

 
= + ∆ + ∇ − ∇ − ∇ 

 
∑ ∑ ∑ ∑ɶ ɶ ɶ ɶ    (34) 

where I = real particles ; J = virtual particles, such that 

2J I ox x h− ≤ . 

It is important to mention that with Taylor-SPH method, the 

PDEs are written in terms of stress and velocity and thus only 

essential boundary conditions must be considered. 

4. Numerical Examples 

The examples which will be considered in the following 

have been chosen in order to verify the following points: 

� The Taylor-SPH method eliminates the SPH tensile 

instability 

� The stability condition of the Taylor-SPH method 

� The performance of the Taylor-SPH method concerning 

numerical damping and dispersion properties when 

dealing with shock wave propagation 

� The Taylor-SPH method is useful to model the damaged 

material in dynamic 

4.1. 1D Elastic Bar: SPH Tensile Instability 

As for any numerical method, the first step is to ensure that 

the method is able to provide accurate results for problems 

having an analytical solution. Here, the Taylor-SPH method is 

applied to a shockwave propagation problem into a 

one-dimensional elastic bar. The problem has been sketched in 

Fig. 2 and consists of a bar of length L=0.1333 m with a unit 

section. 

The applied boundary and initial conditions are the 

following: 

- Boundary conditions: ( , ) 0v x L t= =  

- Initial conditions: 
2

2

5 m/s 3.3325 x 10
( , 0) ( )

0          or 3.3325 x 10
o

for x m
v x t v x

f x m

−

−

− ≤
= = =  >

 

Therefore, the bar is initially under tension. 

The material properties of the bar are: Young’s modulus 
112 x 10E Pa=  and density 

37833 / .kg mρ =  This 

example has been treated by Dyka et al. [8] to address the 

tensile instability. Material properties, boundary conditions 

and discretization parameters are similar to those used by 

Dyka et al. [8]. Solving this problem with a traditional SPH 

algorithm is impossible due to the tensile instability [8]. 

There is an analytical solution for this problem: the 

incoming wave will propagate towards the right boundary 

without any distortion and keeping its initial amplitude of 
81.979 x 10o ov E Paσ ρ= = . The wave speed is 

5053 /c m s= . It will reflect at the fixed end (x=L) and the 

amplitude of the stress at this point will be doubled, while the 

velocity of the wave after reflection will propagate along the 

bar with 5 /v m s= . 

To apply the Taylor-SPH method, the bar has been 

discretized using 41 real particles and 40 virtual particles. The 

space between two consecutive real particles is
33.3325 x 10x m−∆ = . Dyka et al. [8] used the time step

60.4 x 10t s−∆ = , therefore the Courant number is

0.606
c t

C
x

∆= =
∆

. Dyka el al. has chosen this time step as to 

not exceed the Courant stability limit. Fig. 3 depicts the stress 

( , )x tσ  at point 
21.6662 x10x m−=  obtained using the 

Taylor-SPH method. As it can be observed, with this Courant 

number the result presents numerical diffusion and 

oscillations which remain bounded during the simulation. The 

result shows that the Taylor-SPH method is stable. 

The calculation has been repeated with Courant number 

C=1 and therefore the time step is 
76.595 x10 .t s−∆ =  Figs. 4 

and 5 show the stress ( , )x tσ  and the velocity ( , )v x t  at 

point 
21.6662 x10x m−=  respectively. The numerical 

solution using Taylor-SPH is free of oscillations and diffusion 

and the results are in complete agreement with the analytical 

solution. These results for the shock wave propagation 

problem in an elastic bar show the good performance of the 

Taylor-SPH method and demonstrate that the proposed 

method eliminates the SPH tensile instability and have a good 

shockwave propagation property. 
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Fig. 2. 1D elastic bar. 

 

Fig. 3. Stress at point x=1.6662 x10-2 m as function of time. Courant number C=0.606. 

 

Fig. 4. Stress at point x=1.6662 x10−2 m as function of time. Courant number C=1. 
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Fig. 5. Velocity at point x=1.6662 x10−2 m as function of time. Courant number C=1. 

4.2. Numerical Stability of Taylor-SPH 

The aim of this section is to study the numerical stability of 

the Taylor-SPH method with respect to the smoothing length 

ho and the courant number C. The case study is another 

problem of propagation of a velocity shock wave in a 1D 

elastic bar. The bar is 1m length (L=1m) and unit section. 

The boundary conditions are: 

3

3

1 m/s 0 2.5 x 10
( 0, ) ( )

0 2.5 x 10
o

for t s
v x t v t

for t s

−

−

 ≤ ≤
= = =  >

 

and  

( , ) 0v x L t= =  

The initial conditions are: ( ,0) 0   ;    ( ,0) 0x v xσ = =  

Material properties are: density 
32000 /kg mρ =  and 

Young's modulus
78.0x10E Pa= . With these parameters, the 

wave speed of the elastic material is 200 /c m s= . 

There is an analytical solution available for this elastic 

problem. The incoming wave will propagate towards the right 

boundary without any distortion and keeping its initial 

amplitude of σo=4x10
5 

Pa and vo=1m/s. It will reflect at the 

fixed x=1m and the amplitude of stress at this point will be 

doubled to a value of 8x10
5
 Pa, while the velocity of the wave 

after reflection will propagate along the bar with v = −1m/s. 

4.2.1. Stability Analysis with Respect to the Smoothing 

Length 

To apply the Taylor-SPH method, the bar has been 

discretized using 51 real particles and 50 virtual particles. The 

space between two consecutives real particles is 0.02x m∆ = . 

The space between real-virtual particles is ' / 2x x∆ = ∆ . Here 

the Courant number, C, is defined as a function of ∆x. It is 

clear that if the Courant number is defined as a function of ∆x', 

the value of C would be doubled. The time step used for the 

analysis has been chosen to be 4
10t s

−∆ = which corresponds 

to a Courant number C=1. 

The error estimation is computed using the L2 norm as well 

as the energy norm. 

� The L2 norm of velocity error is obtained by: 

2

2

2

exact h

L

L exact

L

v v
Err

v

−
=  

with  

2

2

0

L

L
v v dx= ∫                 (35) 

where v
exact

 is the exact solution and v
h 

is the numerical 

solution given by Taylor-SPH. 

� The error in the energy norm is obtained by 
exact h

Energ

Energ exact

Energ

Err
σ σ

σ

−
=  

0

L

Energ
dxσ σε= ∫                (36) 

where σexact
 is the exact solution and σh 

is the numerical 

solution. 

Table 1 gives the L2 norm of the velocity error and the error 

in the energy norm as function of ho/∆x. Fig. 6 shows the error 

in the L2 norm for different values of ho/∆x. It can be observed 

that for values of ho/∆x between 0.6 and 1.5, the results are in 

good agreement with the analytic solution. The error is the 

order of 10
−3 

% in the L2 norm and 10
−8 

% in energy norm. In 

this case, the number of real particles inside the compact 

domain is between 3 and 7 particles. 

By increasing the value of ho/∆x≥1.6, the error in both 

norms increases. The numerical solution loses its accuracy 
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and it becomes highly distorted. For higher values of ho/∆x, the solution diverges. 

Table 1. Error in L2 norm and in energy norm for different values of ho/∆x. 

ho/∆x r = 2h0 Number of real particles inside the compact domain Error L2 norm (%) Error Energy norm (%) 

0.6 - 1.5 0.024 - 0.06 3 - 7 10−3 10−8 

1.6 - 2.5 0.072 - 0.1 7 - 11 13 - 27 5 - 8 

 

Fig. 6. Error in L2 norm for different values of ho/∆x. 

Table 2. Error in L2 norm and in energy norm for different values of Courant number. 

Courant number ∆t(s) Error L2 norm (%) Error Energy norm (%) 

1 10−4 10−3 10−8 

0.8 8 10−5 18.6 3.5 

0.6 6 10−5 23 5.3 

0.1 10−5 26.5 7 

 

Fig. 7. Error in L2 norm for different values of the Courant number. 
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4.2.2. Stability Analysis with Respect to the Courant Number 

In order to perform the stability analysis of the Taylor-SPH 

method with respect to the Courant number C, a similar 

example as above has been treated. The parameter ho/∆x has 

been kept constant equal to 1.5 and the courant number has 

been gradually increased from 0.1 to 1. The L2 norm of the 

error and the error in the energy norm as function of the 

Courant number are given in Table 2. Fig. 7 shows the error in 

the L2 norm for different values of C. 

It can be observed that for Courant number C=1 which 

corresponds to time step 4
10t s

−∆ = , the accuracy of the 

solution is maximal with an error of about 10
−3

 % in L2 norm 

norm. As the value of the Courant number is decreased, the 

solution loses its accuracy and becomes oscillatory which 

results in an increasing error. For 1C > , the numerical 

solution diverge. 

4.3. Shock Wave Propagation in Viscoplastic Damage Bar 

In this Section, the shock wave propagation in 

elasto-viscoplastic damage bar with a length of L=2m has 

been studied. As mentioned above, the viscoplastic law is 

introduced to regularize the damage model. The parameters 

used in this example are: density ρ = 2400 kg/m
3
; Young’s 

modulus E=36000 MPa; viscoplastic model parameters 

(γ,N)=(5,1); softening parameter H= −E/10; yield stress 

σo=10MPa; damage parameters  α =5000; κo=10
−4

. 

The boundary conditions are the following: the bar is fixed 

at the right end x=L, and at the left end x=0 the velocity is 

imposed: (0, ) ( ) ( )
o o

v t v t H t t= = −  where H is the Heaviside 

function and to=5x10−4s. The bar is disretized with 200 real 

particles and 199 virtual particles. The space between two 

consecutive real particles is ∆x=0.01 m. The wave speed in the 

elastic material is c=3873m/s and the corresponding stress 

amplitude is 9.29E MPaρ = . The Courant number chosen 

in the computation is C=1 which corresponds to the time step 

∆t=2.58x10−6 s. Fig. 8 shows the stress σ(x=2m,t) at the right 

end of the bar after the reflection of the shock wave occurs for 

the following cases: (a) elastic bar (b) viscoplastic bar (c) 

viscoplastic damage bar. Before the reflection, the behaviour 

of the bar is elastic because the stress along the bar does not 

exceed the yield stress. After reflection the amplitude of the 

stress doubles and becomes 18.59 10
o

MPa MPaσ> = . The 

bar behaves non-linearly and irreversible viscoplastic strains 

occur followed by damage of the material. After reflection of 

the wave, the stress exceeds the yield stress and therefore 

viscoplastic strain and damage are accumulated which results 

in the decrease of the stresses. The decrease of the curves 

depends on the parameters of viscoplastic and damage model. 

In Fig. 9 is represented the evolution of damage variable D 

along the bar at different times. The maximum value of 

damage Dmax = 0.94 is reached at time t = 1.016 ms. The bar 

starts to be damaged at the fixed end x = 2m just after 

reflection of the wave. Then damage propagates to locate on a 

reduced distance of the bar. Fig. 10 shows the evolution of the 

damage at x = 2m versus time. After reflection of the wave, the 

stress value is doubled and the damage accumulates and 

converges to the limit value 0.94. Fig. 11 represents the 

stress-strain curves for two different refinements: 100 and 200 

real particles. It can be observed that the results are similar and 

do not depend on the number of particles. 

This example illustrates the performance of the Taylor-SPH 

method in numerical simulation of localization phenomena for 

viscoplastic damage material. 

 

Fig. 8. Stress σ(x=2 m;t) at the left end of the bar after reflection of the wave. 
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Fig. 9. Damage variable along the bar at different times. 

 

Fig. 10. Damage variable evolution at the left end of the bar. 
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Fig. 11. Stress-strain curves for 100 and 200 number of real particles. 

5. Conclusions 

Modelling of shock wave propagating in linear or non linear 

materials presents several problems such as numerical 

diffusion and dispersion, volumetric locking, mesh 

dependency, accurate determination of failure surfaces, etc. 

Here, we have introduced a new meshless method Taylor-SPH 

that is based on a first-order system of PDEs involving 

velocities and stresses. It consists of a two-steps time 

discretization algorithm by means of a Taylor series expansion 

and a corrected SPH method for the spatial discretization. Two 

different sets of particles have been used for the numerical 

computation and a Lagrangian kernel has been used in order to 

avoid numerical instabilities. It is important to mention that 

using the two sets of particles ensures stability and not being 

necessary to introduce artificial viscosity in the model to solve 

the SPH tensile instability. This meshless method has been 

applied to shock waves propagating in 1D elastic bar and 

viscoplastic damage bar. From the obtained results, we can 

conclude that the main advantages of Taylor-SPH method are: 

� It avoids the tensile instability 

� It minimizes the numerical damping and dispersion 

when dealing with shock waves 

� It is able to model localization phenomena for 

viscoplastic damage material without lose of 

hyperbolicity of PDEs. 

� It requires a small number of particles to obtain accurate 

results. 
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