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Abstract: In this paper, we develop the meshless local Petrov-Galerkin formulation of the scattering from rectangular 

cavities embedded in a ground plane. The electromagnetic scattering by the cavity is governed by the Helmholtz equation along 

with Sommerfeld's radiation conditions imposed at infinity. The MLPG method is a truly meshless method wherein no elements 

or background cells are needed, in either the interpolation or integration. Based on local weak form and the moving least square 

(MLS) approximation, this truly meshless method is applied to solve the scattering problem. The results of numerical 

experiments have shown the efficiency and accuracy of the proposed method. 
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1. Introduction 

The electromagnetic scattering by open cavities has 

attracted much attention by both engineering and 

mathematical community due to its important industrial and 

military applications. Examples of cavities include jet engine 

inlet ducts and exhaust nozzles, cavity-backed antennas, and 

cracks and gaps in the metallic skin of the aircraft. Because a 

cavity residing in a scatter can significantly contribute to the 

overall Radar Cross Section (RCS) of the target, the accurate 

prediction of the RCS of the cavity is necessary. There is a 

large literature available on computation electromagnetic 

scattering of open cavities, see for examples [1-4], and 

references cited therein. 

In this paper, we focus on the RCS of open cavity as 

shown in Fig. 1. The ground plane and the wall of the open 

cavity are assumed as perfect electric conductors (PEC), and 

the interior of the open cavity is filled with non-magnetic 

materials which may be inhomogeneous. The half space 

above the ground plane is filled with a homogenous and 

isotropic medium with its permittivity 0ε  and permeability 

0µ . In this setting, the electromagnetic scattering by the 

cavity is governed by the Helmholtz equation along with 

Sommerfeld's radiation conditions imposed at infinity. 

Classical transparent boundary condition is introduced at the 

aperture, and the cavity problem defined in an infinite 

domain is reduced to a Helmholtz equation with simple 

boundary conditions on the wall of the cavity and a nonlocal 

boundary condition on the aperture. 

The development of new numerical methods for the 

approximate solutions of Helmholtz equations is an 

interesting research area of many engineers and 

mathematicians. Meshless methods, as alternative numerical 

approaches to the classical numerical methods such as the 

finite element and boundary element method, have attracted 

much attention in recent years, because of their flexibility 

and simplicity. Unlike the conventional numerical methods, 

meshless methods require neither domain nor boundary 

discretization and consequently no information on the 

connectivity between nodal points and elements is needed. In 

the two last decades, many types of meshless methods have 

been proposed. Among these meshless methods, the meshless 

local Petrov-Galerkin method (MLPG) proposed by Atluri 

and his team in [5-6] is a truly meshless method since it does 

not need a background mesh for numerical integration. Based 

on the local weak form of governing equations over small 

subdomains specified for each nodal point, all integrals can 

be easily evaluated over the regularly shaped, overlapping 

subdomains of arbitrary shape and their respective 

boundaries. Therefore no elements or background cells are 

necessary either for interpolation or integration. In this paper 
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we apply the MLPG method to solve the scattering of 

electromagnetic plane waves by a two-dimensional (2-D) 

rectangular cavity filled with the homogeneous medium. 

The rest of the paper is organized as follows. In the next 

section, the governing equation of scattering model from 

open cavity is described and further is reduced to a bounded 

domain problem. In the third section, the MLPG method is 

applied to solve the scattering problem. Numerical 

experiments are presented to illustrate the competitive 

behavior of the method in section 4. The paper ends with 

some conclusions in the last section. 

2. The Electromagnetic Scattering Model 

by the Rectangular Cavity 

In this paper, we consider the electromagnetic scattering of 

an incident plane wave by a two-dimensional open rectangular 

cavity embedded in an infinite ground plane as shown in Fig.1. 

Throughout the paper, the medium and material are invariant 

in the z-direction. As shown in Fig. 1, an open cavity 
2RΩ∈ , 

enclosed by the aperture Γ and the wall \∂Ω Γ , is 

embedded in the perfectly electric conducting ground plane
CΓ . The medium is assumed to be non-magnetic and has a 

constant magnetic permeability, which equals to the magnetic 

permeability of vacuum. The medium in the half space above 

the ground plane is assumed to be homogeneous with positive 

electric permittivity 0ε . The interior of the cavity is filled 

with homogeneous medium, which have relative electric 

permittivity ( , )r x yε . 

 

Figure 1. The model geometry of rectangular cavity scattering. 

In TM case, the magnetic field is transverse to the invariant 

direction. The incident and the total electric fields are parallel 

to the z-axis. Assume the incident and the total fields are

(0,0, )i

iE u  and (0,0, )totE u= respectively. By the perfectly 

electrical conduct condition, the total field u vanishes on the 

wall and 
CΓ . The Maxwell equations are reduced to the 

two-dimensional Helmholtz equation 

2

2( , )    in 

0                       on ( \ )  

u,                       are continuous on ,

C

u k u f x y R

u

u

n

+∆ + = Ω ∪

= ∂Ω Γ ∪ Γ
∂ Γ
∂

         (1) 

where
2 2

0k ω εµ= , ω  is the angular frequency and k is 

called wave number. 

Let an incoming plane wave 0i ( sin cos )k x yiu e
θ θ−=  be incident 

on the cavity from above space, where ( / 2, / 2)θ π π∈ − is 

the angle incidence with respect to the positive y-axis, and

0 0 0k ω ε µ= is the wave number of the free space. Assume 

su  be the tangential component of the scattered field

(0,0, )s

s
E u= . 0i ( sin cos )k x ys iu u u e

θ θ+= − + , which satisfies  

2

0 20  in .u k u R+∆ + =                  (2) 

In addition, the scattered field satisfies the radiation 

condition 

0lim ( i ) 0.
s

s

r

u
r k u

n→∞

∂ − =
∂

              (3) 

Using the upper half-plane Green’s function for the 

Helmholtz equation, we can get the so-called transparent 

boundary operator  

(1)0

1 0

i 1
( )( ) : ( | |) ( ,0) .

2 | |

k
I u x H k x x u x dx

x xΓ
′ ′ ′= −

′−∫    (4) 

The scattering problem is reduced to the following bounded 

domain problem. 

2

0 ( , )     in 

0                              on \  

( ) ( )           on ,

ru k u f x y

u

u
I u g x

n

ε∆ + = Ω
= ∂Ω Γ

∂ = + Γ
∂

       (5) 

where
i( ) 2i xg x e αβ= − . 

In the TE case, the formulation process can be similarly 

deduced. The total field satisfies 

2

0

1
( , )      in 

0                                      on \  

( ) ( )                         on ,

r

u k u f x y

u

n

u I u g x

ε
 

∇⋅ ∇ + = Ω 
 

∂ = ∂Ω Γ
∂

= + Γɶ ɶ

      (6) 

where 
(1)

0 0

0

1 1 ( , )
( )( ) : ( | |) ,

2 r y

u x y
I u x H k x x dx

yε −
Γ

′=

′ ′∂′ ′= − −
′∂∫  

i( ) 2 xg x e α=ɶ . 

3. The MLPG Method for the Cavity 

Scattering Problem 

In this section, we apply the MLPG method for the 

electromagnetic scattering problem by open rectangular 

cavities in the case of TM polarization. The algorithm in TE 
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case can be similarly formulated.  

3.1. Moving Least Square (MLS) Approximation 

In order to approximate the trial functions over the 

solution domain, a meshless interpolation scheme is required. 

The moving least square (MLS) is widely used to interpolate 

random data with appropriate accuracy in many types of 

meshless methods for constructing meshless shape functions. 

The property of MLS has been discussed in many literatures. 

In a 2-D domain Ω , we consider a function (x)u  with a 

set of nodes {x ( , )}, 1,2,..., ,i i ix y i n= =  and the parameter 

associated with the approximation at node i is denoted by iu . 

The MLS approximation (x)hu  of (x)u  can be defined by  

1

(x) (x) (x) p (x)a(x),
m

h T

j j

j

u p a
=

= =∑        (7) 

where 
1 2p(x) ( (x), (x),..., (x))

m
p p p=  is usually chosen as 

complete monomial basis of order m . For example, 

p (x) p ( , ) {1, , },T T x y x y= =  (linear basis, m=3) 

2 2p (x) p ( , ) {1, , , , , },T T x y x y xy x y= =  (quadratic basis, m=6) 

in a 2-D model. The coefficient functions in (7) 

1 2a(x) ( (x), (x),..., (x))
m

a a a=  are determined by minimizing 

a weighted discrete 2L  norm, which is defined as follows, 

( )

( )
( ) ( )

2

1

2

1

ˆ(x) (x x ) (x )

ˆ        = (x x ) p (x )a(x)

ˆ ˆ        = P a(x) u W P a(x) u .

n
h

i i i

i

n
T

i i i

i

T

J w u u

w u

=

=

= − −

− −

− −

∑

∑          (8) 

Here (x x )
i

w −  is the weight function associated with node 

i, and it usually has a local compact support with 

(x x ) 0
i

w − ≠ , and ( )1 2W diag (x x ), (x x ),..., (x x )nw w w= − − − ，

( )1 2
P p(x ),p(x ),..., p(x )

T

n
=  and ( )1 2

ˆ ˆ ˆ ˆu , ,...,
T

n
u u u= , ˆ

i
u  is 

the fictitious nodal value associated with x
i

. Note the 

stationarity of J with respect to a(x)  leads to the following 

linear relation between a(x) and û : 

ˆA(x)a(x) B(x) u 0,
a

J∂ = − =
∂

           (9) 

where the matrices A(x) and B(x)  are defined by 

A(x) P W PT= , B(x) P W.T= Thus a(x) can be solved, and 

we substitute it into (7) and obtain 

1

ˆ(x) (x) (x) u,
n

h

i

i

u
=

= Φ = Φ∑            (10) 

where  

1(x) p (x) A (x) B(x).T −Φ =              (11) 

In Eq. (10), (x)
i

Φ  is usually called the nodal shape 

function of the MLS approximation corresponding to the 

nodal point x
i
. It can be easily seen that (x)

i
Φ

 
equals zero 

when x is not in the support of the nodal point x
i
, which 

preserves the local character of the moving least squares 

approximation. Furthermore, (x)Φ  is well defined only if the 

matrix A is not singular, which means P  must consist of 

linearly independent row vectors. In addition, a fact is that the 

smoothness of the shape functions is influenced by the weight 

functions and basis functions. Let ( )kC Ω  be the space of k-th 

continuously differentiable functions. If (x x ) ( )k

i
w C− ∈ Ω , 

1,2,...,i n=  and (x) ( )l

jp C∈ Ω , 1, 2,...,j m= , then 

(x) ( )r

i
CΦ ∈ Ω , min{ , }r k l= . Many kinds of basis functions 

and the weight functions can be chosen for implementing the 

MLS approximation in MLPG method, see [6]. In this paper, a 

spline weight function with compact supports is taken as 

follows, 

2 3 4

1 6 8 3 ,   0 ,
(x x )

0,                                                 ,  

i i i
i i

i i i i

i i

d d d
d r

w r r r

d r

      
 − + − ≤ ≤     − =       
 ≥

 (12) 

where x xi id = −  is the distance from node xi to the point 

x , and ir is the size of the compact support for the weight 

function (x x )iw −  associated with the node i . Here, it is 

obvious that the spline weight function is 
1( )C Ω  continuous 

over the entire domain. In order to ensure the regularity of A , 

ir  should be chosen as large enough parameter so as that 

sufficient number of nodes is covered in the domain of 

definition of every sample point. However, on the other side, 

ir  should also be not too large so as to maintain the local 

character of the MLS approximation. 

The partial derivatives of the shape functions (x)iΦ is 

given by the following 

( )1 1 1

, , , ,

1

(x) A B (A B A B)  ,
m

i s j s j s s ji

j

p p− − −

=
Φ = + +∑     (13) 

where 1 1

, ,A (A )s s

− −=  represents the derivative of the inverse 

of A with respect to sx , and it is given by 1 1

, ,A A A As s

− −= − , 

where the index ,
( ) s indicates a spatial derivative. 

From the above discussion it can be seen that the MLS 

shape functions do not possess Kronecker delta property. This 

will cause the difficulty to impose the essential boundary 

conditions. Many techniques have been proposed to deal with 

the difficulty. Lagrange multipliers and penalty methods are 

two kinds of widely used methods for imposition of essential 

boundary conditions. However, the use of the Lagrange 

multipliers will increase the size of linear system and, more 
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seriously, the choice of interpolation for the system of 

multipliers can lead to a singularity in the system, which is 

hard to predict a priori, see [7]. Though the penalty method 

requires only a minor modification of the weak form with the 

introduction of a scalar parameter that controls the imposition 

of essential boundary conditions, a suitable value for the 

penalty parameter is not easy to choose in advance. The 

method presented in [8], by coupling the meshless method and 

the conventional finite element along the essential boundary, 

avoid the above drawbacks, and it will be used in this paper. 

3.2. Local Petrov-Galerkin Integral Equation 

Instead of using the global weak form, the MLPG method 

constructs the weak form over local cell sΩ , which is a 

small region taken for each node in the global domain Ω . 

The local cells overlap each other and cover the whole global 

domain Ω . The local cells could be of any geometric shape 

and size. In this paper, for simplicity, we take them as 

circular shapes. The local weak form of the government 

equation in TM case can be written as follows, 

( )2  =0 ,
s

u k u f v d
Ω

∆ + − Ω∫          (14) 

where sΩ is a local sub-domain associated with any node, 

and v  is a test function. Using the divergence theorem, the 

above formula yields the following equation 

2    ( )  s+  s

=   s,

s s sq su

s sq

u
u v d k uv d I u v d v d

n

fv d gv d

Ω Ω Γ Γ

Ω Γ

∂− ∇ ∇ Ω + Ω +
∂

Ω −

∫ ∫ ∫ ∫

∫ ∫
(15) 

Where suΓ  is the intersection of \∂Ω Γ  and the 

boundary s∂Ω , which is the boundary of sΩ , and sqΓ  is 

the intersection of the aperture Γ and the boundary s∂Ω . 

Different local test functions can be used in the weak form 

Eq. (15), which leads to different ways to construct the global 

stiffness matrix, see [6]. Here in Eq. (15), the term 

( )  s
sq

I u v d
Γ∫ needs to be specially considered. Note the 

definition of ( )I u , and we can rewrite Eq. (4) as 

0

1 0

0

1 0

( ,0)
( )( ) ( )

2

i ( ,0)
               ( ) ,

2

k u x
I u x Y k x x dx

x x

k u x
J k x x dx

x x

Γ

Γ

′ ′ ′= − −
′−

′ ′ ′+ −
′−

∫

∫
      (16) 

where 1( )J z and 1( )Y z  are the first and second Bessel 

functions separately, and the Hankel function 
(1)

1 1 1( ) ( ) i ( )H z J z Y z= + . Note 1( )Y z is hypersingular, so the 

first part in the above equation denotes a Hadamard principle 

value integral. By using Toeplitz type approximation in [9] 

and the classical Toeplitz rule, ( )I u in the nonlocal boundary 

condition (5) can be approximated as 

1

( )( ,0) ( ,0).
M

i n M il l n M

l

I u x G u x+ − + −
=

≈∑          (17) 

Here we assume that M denotes the number of 

discretization nodes in the horizontal direction of the cavity, 

and N is the number of nodes in the longitudinal direction of 

the cavity, thus n N M= × . Here G is a complex matrix, and 

it is defined as 

Re Im ,il il ilG G G= +                (18) 

Where 
Re

ilG is the real part, and 
Im

ilG is the imaginary part, 

( )0Re

1 0 ,
2

i n M l n M

il il i n M l n M

k x x
G t Y k x x

+ − + −
+ − + −

−
= − −  

( )Im 0

1 0 ,
2

il i n M l n M

i n M l n M

k h
G J k x x

x x
+ − + −

+ − + −

= −
−

 

( ) ( )( )2 2

(1 ln 2) ,                                1,

l ,                                          ,

ln ( ) ( ) 1 ,    .

il

h i l

t h i l

i l i l h otherwise

 − − =
= − =


− − −

 

Applying the MLS approximation for the unknown 

functions, and choosing (x)Φ  as the test function (x)v , we 

can transform the local integral (15) to a system of algebraic 

equations with unknown quantities at nodes used for spatial 

approximation as follows, 

� û =ℱ                   (19) 

where  

�ij =
2

s

j ji i

i j
k d

x x y y

φ φφ φ φ φ
Ω

 ∂ ∂  ∂ ∂
− + + Ω   ∂ ∂ ∂ ∂  
∫  

( )(x)  ,
su sq

i i

j j i jds I ds
x y

φ φφ φ φ φ
Γ Γ

∂ ∂ 
+ + + ∂ ∂ 
∫ ∫    

(20) 

ℱj = ,    1,2,..., .
s sq

j jf d g ds j nφ φ
Ω Γ

Ω − =∫ ∫        (21) 

As for the enforcement of the essential boundary condition, 

we apply the coupling between the MLPG and finite element 

method to impose the essence boundary condition, see [8] for 

detail. 

4. Numerical Test and Discussion 

Several numerical experiments have been performed, in 

order to illustrate the effectiveness of the MLPG method in 

electromagnetic scattering by open cavity in the ground plane. 

For the tests we use the linear basis function and the 

Gaussian weight function. In all computations, to ensure the 

invertibility of the moment matrix A, we put 2
i

r h= × , 
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where x yh h h= = for simplicity. The calculations are run on 

a Pentium 4 PC Laptop with 2.50 GHZ of CPU and 4 GB of 

RAM. 

4.1. Example 1 

An artificial example defined by Eq. (5) with a cavity 

1a b= =  to verify the accuracy of approximations. The 

( , )f x y  and ( )g x  are chosen such that the exact function is 

( ) ( )( )0 0( , ) sin 2 sin 2 4
xy

u x y e k x k yπ= + , and ( )g x  is 

computed by ( ) ( )
u

g x I u
n

∂= −
∂

. Accuracy of the estimated 

solutions can be worked out by measuring the 
2ne  and 

ne
∞

 error norms which are defined by 

( )
1

2 2

2
ˆ(x) (x) ,ne u u dxdy

Ω
= −∫          (22) 

{ }
x

ˆmax (x) (x) ,ne u u
∞ ∈Ω

= −            (23) 

where ˆ(x)u  is the MLPG solution, and (x)u  is the 

analytic solution. In fact, for obtaining the RCS we pay more 

attention to the accuracy of the solutions at the aperture Γ , 

so the error measures of the numerical solutions on Γ  are 

defined by  

( )
1

2 2

2
ˆ( ,0) ( ,0) ,e u x u x dxΓ Γ

= −∫        (24) 

{ }
( ,0)

ˆmax ( ,0) ( ,0) .
x

e u x u xΓ ∞ ∈Γ
= −         (25) 

The geometry and node distribution ( 25 25× ) for the 

cavity model in the present work are displayed in Fig. 2. We 

distribute the uniform elements near \∂Ω Γ so as to apply 

the coupled technique between the MLPG and finite element 

method for enforcing the essential boundary conditions. The 

cavity considered is an empty cavity, i.e. 1rε = . When 

0 2k π= and 4π , 25 25,× 33 33,× 49 49,× 65 65× nodes are 

distributed separately. At normal incidence, the results in 

terms of the errors in the domain and at the aperture are 

reported in Table 1 and Table 2 respectively, which show the 

errors become less when more nodes are set, and error 

performance with different wave number 0k  goes in a 

similar manner. The numerical solutions gradually converge 

to the exact values as the number of nodes increases. 

 

Figure 2. The distribution of nodes and elements for the cavity. 

4.2. Example 2 

A plane wave scattering from a rectangular cavity with 1 

meter wide and 0.25 meters deep at normal incidence. We 

applied the MLPG method to solve the cavity scattering in 

the TM case. The magnitude of the field of the cavity filled 

with the medium 2.0rε =  and 8 irε = + are given when 

0 2k π= at normal incidence. The radar cross section is also 

computed, and the results is shown in Fig. 3 and Fig. 4. In 

these figures, the meshless solutions are compared with those 

results, noted by ‘o’, solved by the finite element method in 

[10].  

Table 1. Errors of numerical solution for Example 1 when 
0 2k π=

.
 

Nodes 2n
e  n

e
∞

 
2

eΓ  eΓ ∞
 

25 25×  
22.411 10−×  

24.032 10−×  
21.058 10−×  

23.472 10−×  

33 33×  
37.452 10−×  

39.891 10−×  
36.478 10−×  

38.774 10−×  

49 49×  
31.250 10−×  

33.031 10−×  
31.002 10−×  

32.432 10−×  

65 65×  
42.039 10−×  

44.013 10−×  
41.876 10−×  

42.363 10−×  

Table 2. Errors of numerical solution for Example 1 when 
0 4k π=

.
 

Nodes 2n
e  n

e
∞

 
2

eΓ  eΓ ∞
 

25 25×  
26.961 10−×  

27.910 10−×  
25.432 10−×  

27.884 10−×  

33 33×  
23.890 10−×  

24.412 10−×  
22.903 10−×  

24.168 10−×  

49 49×  
34.312 10−×  

36.273 10−×  
31.643 10−×  

35.422 10−×  

65 65×  
45.143 10−×  

47.251 10−×  
43.284 10−×  

45.293 10−×  
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Figure 3. The magnitude of the electric field at the aperture (left) and the RCS (right) for the cavity filled with the medium 2.0rε = . 

  

Figure 4. The magnitude of the electric field at the aperture (left) and the RCS (right) for the cavity filled with the medium 8 irε = + .

5. Conclusion 

The electromagnetic scattering problems from open cavities 

have significant application in computational mathematics 

and electromagnetism. Instead of traditional numerical 

methods, avoiding reliance on elements or meshes, meshless 

methods have attracted more and more attention in the 

engineering and scientific modeling. The meshless local 

Prtrov-Galerkin method is a truly meshless method in which 

the trial and test functions are chosen from totally different 

function spaces. By using local weak form and the moving 

least square (MLS) approximation, we apply the MLPG 

method to solve the scattering problem by rectangular 

cavities in a ground plane in the paper. The results of 

numerical experiments demonstrate the capability of MLPG 

method for the scattering problem.  
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