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Abstract: This paper established the ARMA-GJR-AL model of dynamic risk VaR and CVaR measurement. Considering from 

aspects of the correlation and volatility and residual distribution characteristics, studying the dynamic risk measures of VaR and 

CVaR based on ARMA-GJR-AL model. Through empirical research, Risk prediction and accuracy of inspection are given of the 

Shanghai stock market and the New York stock market. And we study the effectiveness of the model. The results show that the 

dynamic risk measurement model based on AL distribution is more reasonable and applicability, so it can effectively measure 

risk. 
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1. Introduction 

The distribution of risk in financial markets not only on the 

edge always has a significant peak and the fat tail, and features 

such as asymmetrical, but also often shows self correlation, 

heteroscedasticity and leverage effect phenomenon. In order 

to accurately measure the VaR and the CVaR, hoping to 

capture these characteristics in a certain extent, ARMA model 

(Box et al., 1994) and GARCH model (Bollerslev, 1986) have 

been widely applied. 

Bollerslev (1986)
[3-6]

 on the basis of in-depth study on the 

ARCH model, extend the model to a more general infinite 

error term. And then introduce the pre conditional variance in 

regression in analysis, research and propose the GARCH 

model (or generalized ARCH model), which makes the model 

identification, parameter estimation and the establishment and 

are more convenient. Engle, Lilien and Robbins (1987)
[7-10]

 

joined the analysis of the risk premium in the research, put 

forward the ARCH-M model and GARCH-M model, which 

makes the study linked the conditional variance and the 

conditional mean, provide a new method for estimating and 

testing the time-dependent risk compensation. In the Black 

(1976)
[1-2]

 study, shows that the impact of good news and bad 

news on market market is not the same, Then, some non 

symmetric GARCH model was proposed to describe the study 

of the market risk characteristics. Zakoian (1990)
[15]

 proposed 

the TARCH model, Virtual variables used in the study to 

reflect the good or bad news of different impact on market 

volatility. Nelson (1990, 1991)
[12-14]

 studied EGARCH model 

(Exponential GARCH),and describe the leverage effect of 

market volatility using the logarithmic form in the variance 

model. Glosten et al. (1993)
[11]

 on the base of previous study  

proposed Heteroscedastic Model of non symmetrical, referred 

to as the GJR model, This model not only has advantages of 

less general GARCH model that fewer parameters estimated 

and can well describe the volatility asymmetry. Due to the 

importance of volatility and risk in the financial analysis, 

Research on GARCH model of the front is widely used in 

many aspects of financial time series modeling, market risk 

measurement and management etc. 

There are 3 Levels titles in an article to make ideas clear: 

(1)Given the establishment of ARMA (1,1)-GJR(1.1)-AL 

model 

(2)Given the prediction and test about VaR and CVaR 

(3)Given the comprehensive analysis about the model 

2. The Empirical Analysis 

2.1. The Selection of Data and Its Characteristics 

Selecting S.H.I (Shanghai composite index) and N.Y. 

composite index as research objects. Sample interval is from 

2010.01.04 to 2014.12.31.Using Logarithm 

yields,
1

ln ln , 1,2...,
t t t

R P P t n−= − =  

The results of statistics (table 1) show that tail of 
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exponential gains and losses distribution is fatter than normal 

distribution’s. which mains abnormal fluctuations in the 

market happen sometimes, The fact that skewness are all 

negative shows , from a long-term perspective, that fluctuation 

in the left side of exponential gains and losses distribution is 

larger than right side. So normal distribution cannot 

effectively characterize these phenomena.  Stationary 

ADF-test results that H=1and P=1.0e-0.3 are far less than 0.05, 

showing the results reject unit root process hypothesis, and 

accept the hypothesis of stationary sequence. 

Quantitative study shows the distribution with the 

correlation and the ARCH phenomenon, testing its lag 

value(10、15、20) by Ljung-Bo-Q and Engle’s ARCH. In the 

5% significant level.(table 2) 

 

Figure 1. The return series of Shanghai Composite Index (left) and the New York composite index (right). 

Table 1. Yield-related statistics and its stationarity test results. 

Yield Mean Variance STD Slewness Kurtosis ADF-test 

S.H. 0.000 0.000 0.020 -0.352 5.454 1(0.001) 

N.Y. 0.000 0.000 0.014 -0.681 12.547 1(0.001) 

Notes :data is the H value of backtesting ;( Parentheses are the P value ) 

Table 2. Yield-related statistics and its ARCH test results. 

Lag order 
S.H. N.Y. 

Correlation test Square serial correlation test ARCH text Correlation test Square serial correlation test ARCH text 

10 0(0.201) 1(0) 1(0.000) 1(0.000) 1(0) 1(0) 

15 1(0.003) 1(0) 1(0.000) 1(0.000) 1(0) 1(0) 

20 1(0.004) 1(0) 1(0.000) 1(0.000) 1(0) 1(0) 

Notes: data is the H value of backtesting ;( Parentheses are the P value) 

2.2. The Establishment of Arma(1,1)-Gjr(1.1)-Al Model 

2.2.1. Parameter Estimation 
We capture the characteristics of stock market risk using 

ARMA (1,1)-GJR(1,1)-AL model. Modeling on the observed 

sample: 

( )
    

t t

t

t

X
e

µ
σ

−
=                (1) 

and getting the AL(e) distribution series whose standardized 

residual series is I.I.D. 

Known from the theory of AL distribution, the mean and 

variance of the standard error are 

( )1

0
2

Ee
θ τ κ κ−+ −

= =              (2) 

( ) ( )2 2 2    E e Ee Ee θ τ− = − +            (3) 

So the parameter of the AL distribution: 

( )
( )

1

2
1

,     

2

κ κ
θ

κ κ

−

−

−
=

+ −
            (4) 

 κ κ=                   
(5) 

( )2
1

2
  

2

τ
κ κ −

=
+ −

             (6) 

Known from above, the actual estimated parameters are 

underestimated. Now, we estimate the parameters of ARMA 

(1,1)-GJR(1,1)-AL by the maximum likelihood estimation. Its 
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Joint probability density function is: 

( ) ( ) ( )1 2 1 2, , , , ,n nf x x x f x f x x= ⋅⋯ ⋯        (7) 

And its Logarithmic likelihood function is:  

( )0 1 1 0 1 1 1

2

1
, , , , , , , ln ln

n
t t

e

t t t

x
LLF l f

µφ φ λ α α β κ
σ σ=

  −
= +   

  
∑    (8) 

With ( )ef ⋅  is the density distribution function. Through 

nonlinear optimization, Estimating the parameters of the 

model using MATLAB.(table 3),then get the parameter 

estimation of the AL( e ) distribution.(table 4).At the same 

time, given the parameter estimation of 

ARMA(1,1)-GJR(1,1)-N. 

Known from the table 3, the log likelihood function values 

of two models are both great the main parameters are 

significantly, but individual constants and
1
l . This means that 

they have successfully described the volatility. And they could 

be used as a powerful  tool to analyze stock fluctuation 

behavior; As you can see from the result of parameter 

estimation of ARMA(1,1)-GJR(1,1)-AL,  There are obvious 

heteroscedasticity and degree of leverage effect of Shanghai 

Composite Index and New York composite index. Parameters 

L1 are all positive suggests that stock returns show different 

response to the same degree of negative and positive impact. 

(the bad news caused yields fell  is  more than the  yield 

increases caused by the same degree of good news ). 

Meanwhile, the main parameterκ  of AL(e) distribution are 

greater than 1. Showing that yield distributions of the 

Shanghai Composite Index and the New York Composite 

Index both have asymmetry and fat tails. 

The fact that the test results (J-B and K-S) of the normal 

distribution of the two models in terms of standard 

residuals ,in the 5% or 1% significant level ,accept the 

estimated AL(e) distribution hypothesis, and reject the 

hypothesis of normal distribution.(table 4) And known from 

two index’s of fitting map of  AL(e )distribution of standard 

residual.(figure 2) we can determine that the AL distribution 

assumption is more reasonable than the normal distribution. 

Table 3. Parameter estimation of ARMA (1,1) -GJR (1,1) model. 

 0
ϕ  

1
ϕ  

1
λ  

0
α  

1
α  

1
β  

1
l  κ  LLF 

S.H. 

Normal 

distribution 

0.003**(2.

842) 

-0.524**(-

4.253) 

0.845**(5.

145) 

0.000**(2.

954) 

0.954**(1

03.142) 

0.065**(4.

256) 

0.022(1.54

1) 
 3154.5 

AL distribution 
0.002**(3.

326) 

-0.842**(-

75.214) 

0.842**(8

4.515) 

0.000*(2.2

48) 

0.941**(6

5.259) 

0.047**(5.

241) 

0.013(0.50

14) 

1.021(84.2

54) 
3125.2 

N.Y. 

Normal 
distribution 

0.000(0.67
1) 

0.243(0.84
7) 

-0.419(-1.
069) 

0.000**(5.
452) 

0.947**(7
1.215) 

0 
(0) 

0.159**(5.
324) 

 3951.2 

AL distribution 
0.000**(2.

958) 

0.756**(6.

484) 

-0.754**(-

4.547) 

0.000(0.21

4) 

0.951**(8.

245) 

0 

(0) 

0.147(0.01

54) 

1.155**(8.

951) 
3965.2 

Note: the brackets is t-value, * and * * respectively indicate in the 5% and 1% significant level; LLF is the log likelihood function value. 

Table 4. Estimation of the parameters of AL distribution and residual distribution. 

Standardized residuals of S.H. Standardized residuals of N.Y. 

AL distribution parameters ( , , )θ κ τ =(0.136,1.102,0.996) AL distribution parameters ( , , )θ κ τ =(0.236,1.152,0.986) 

Normal distribution J-B text AL distribution K-S text Normal distribution J-B text AL distribution K-S text 

1(0.001) 0(0.425) 1(0.001) 0(0.142) 

Note: the form data is the H value; the brackets are the P value. 

 

Figure 2. AL distribution fitting chart of standard residuals of the Shanghai market (left) and the New York market (right). 

2.2.2. The Analysis of Standardized Residuals 

In order to further test the validity of the model, we analyze 

the standard residual error sequence of sample data after 

filtering. The mean of standard residual error sequence 

approximation is 0 and standard deviation of standard residual 

error sequence approximation is 1; We also could know from 

table 5, that Skewness is left fat tail and Kurtosis is spike. 

Ljung-Box-Q test and Engle’s ARCH are performed on the 
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standardized residuals, respectively. The relevance and 

ARMA phenomenon are eliminated basically in the 5% 

significant level. ARMA(1,1)-GJR(1.1)-AL model can be 

considered to capture market risk features very good. 

Table 5. standard residual correlation statistics and correlation test and ARCH test. 

Statistic 

Standardized residuals of S.H. Standardized residuals of N.Y. 

Mean Std Skewness Kurtosis Mean Std Skewness Kurtosis 

-0.010 0.960 -0.325 4.758 -0.012 0.958 -0.758 5.145 

Lag orders 
Standardized residuals correlation test and ARCH text Standardized residuals correlation test and ARCH text 

correlation test Square sequence correlation test ARCH text correlation test Square sequence correlation test ARCH text 

10 0(0.147) 0 (0.745) 0 (0.758) 0 (0.758) 0 (0.228) 0 (0.185) 

15 1(0.042) 0 (0.842) 0 (0.846) 0 (0.547) 0 (0.526) 0 (0.458) 

20 0(0.246) 0 (0.574) 0 (0.965) 0 (0.485) 0 (0.659) 0 (0.254) 

Note: parentheses are P value in the significant level. 

2.2.3. Prediction and Test About Var and Cvar 

Based on the above analysis of the model and parameter 

estimates, we select the Shanghai index data for 2014 as a 

sample. And we assume that parameters unchanged during the 

prediction model. So we can calculate condition mean and 

variance of yield fluctuations through the model, and then 

calculate VaR and CVaR. 

We could know from figure 3 that the CVaR estimate is 

much higher than that of var. It is a more conservative risk 

measurement tool. At the same time, in general, Shanghai 

stock market risk is greater than the risk of New York in the 

same period. Especially in the second half of 2014, The 

Shanghai stock market risk is more volatile. 

 

Figure 3. The VaR of the Shanghai Composite Index (left) and the New York composite index (right) in the 95% level. 

For the given confidence level (95%, 97.5%, 99%, 99.5%, 

99.9%), the test result of the VAR and CVAR forecast is given 

(table 6 and table 7). At the same time, the test result of the 

VAR and CVAR by using ARMA(1,1)-GJR(1,1)-N model is 

given. 

From the test results, we could sure the model with stability 

and applicability. 

This article adopts the method of similar to the McNeil and 

Frey (2000) in the trading day that VAR fails. And the 

mean
R

µ and residual R can be obtained through the formula 

( )( )t t tR X CVaR X= − −             (9) 

A sample of 1000 sequences generated by bootstrap method 

to text the 
Rµ  (table 7).Analysis shows that when the VaR 

value fails, the CVaR value of the model accurately predicted 

the actual loss, and 
Rµ  is closer to zero. That means CVAR 

more accurate estimate the tail risk. The effect of CVAR 

prediction (using AL method) is poorer, so it is often 

underestimated risk. While AL method can better predict the 

risk of CVaR  

Table 6. VaR value test. 

Sample Risk model Test statistics 95% 97.5% 99% 99.5% 99.9% 

S.H 

ARMA-GJR-N VaR 
LR 

statistics 
0.390 1.313 3.845 6.741 4.947 

ARMA-GJR-AL VaR 
LR 

statistics 
0.387 0.000 0.071 0.452 0.458 

N.Y. 

ARMA-GJR-N VaR 
LR 

statistics 
1.475 7.211 10.086 6.248 4.109 

ARMA-GJR-AL VaR 
LR 

statistics 
0.456 0.014 0.186 0.047 0.514 

Note: * refused to the model. 
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Table 7. CVaR inspection when VaR invalid. 

Sample Measurement model R-mean 95% 97.5% 99% 99.5% 99.9% 

S.H 

ARMA-GJR-N CVaR R
µ  

-0.011* 
(-2.768) 

-0.004* 
(-1.345) 

-0.009 
(-1.947) 

-0.008 
(-1.487) 

-0.018* 
(-6.458) 

ARMA-GJR-AL CVaR 
Rµ  

-0.001 

(-0.842) 

-0.004 

(-2.487) 

-0.008* 

(-5.178) 

-0.255 

(-1.485) 

# 

# 

N.Y. 

ARMA-GJR-N CVaR 
Rµ  

-0.006 
(-3.187) 

-0.003* 
(-1.957) 

-0.004 
(-0.784) 

-0.038* 
(-2.819) 

-0.005 
(-5.487) 

ARMA-GJR-AL CVaR 
Rµ  

0.007 

(1.852) 

0.001 

(0.754) 

0.002 

(1.547) 

0.006 

(#) 

# 

# 

Note:# denotes the data does not exist; t-statistic values are shown in brackets, * and mean rejected. 

3. Summary 

In view of the actual financial time series and distribution 

characteristics of market risk, in this paper, we consider three 

aspects: the correlation, volatility and residual distribution. 

And establish models to depict the market risk characteristics. 

Based on the financial risk measurement tools and related 

theory of mathematical statistics, The risk value measurement 

formula based on the asymmetric Laplace distribution is given 

and it is concluded that the dynamic risk prediction and 

accuracy test.We select S.H.I and New York's composite index 

from 2009 to 2014 as samples to build 

ARMA(1,1)-GJR(1,1)-AL model and 

ARMA(1,1)-GJR(1,1)-N model to capture the market risk 

characteristics. The Shanghai stock market and the New York 

stock market in 2014 are calculated respectively on the day of 

the dynamic VaR and CVaR. The results show that the 

dynamic risk measurement model based on asymmetric 

Laplace distribution has more rationality and applicability. It 

can effectively predict risk. 

For the stock markets are given in the paper, return series 

tend not to obey normal distribution. Although GJR model can 

describe these characteristics in a certain extent, it is often 

difficult to fully capture the characteristics of yield sequence 

that GJR model based on normal distribution assumption. 

Risk measurement models based on the assumption of normal 

distribution exist some defects, and parameter estimates may 

not be optimal. Asymmetric Laplace distribution can describe 

these characteristics well. Risk measurement models based on 

ARMA(1,1)-GJR(1,1)-AL distribution, whether in  the  US 

market or the Japanese stock market, or in  Chinese stock 

market which as an emerging market ,VaR or CVaR showing 

both a relatively good. In each of the confidence 

interval(95%,97.5%,99%,99.5%,99.9%) ,and  risk  

measurement models based on ARMA(1,1)-GJR(1,1)-AL 

distribution  are more reasonable and applicable than risk  

measurement models based on normal  distribution  
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