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Abstract: The purpose of this paper is to investigate the afsational Chebyshev (RC) collocation method $otving
high-order linear ordinary differential equationghwariable coefficients. Using the rational Chsbgv collocation points,
this method transforms the high-order linear ordirdifferential equations and the given conditidasnatrix equations with
unknown rational Chebyshev coefficients. These icedrtogether with the collocation method are z4ili to reduce the
solution of higher-order ordinary differential e¢joas to the solution of a system of algebraic ¢iqna. The solution is
obtained in terms of RC functions. Numerical exlwpre given to demonstrate the validity and appillity of the method.
The obtained numerical results are compared witlerstexisting methods and the exact solution whesbown to be very
attractive and maintains better accuracy.

K eywor ds. Rational Chebyshev Functions, Higher-Order Ordirifferential Equations,
Rational Chebyshev Collocation Method

Solving higher-order differential equations is nethe
investigated where number of different methods cased

The application of Chebyshev polynomial and rationaWith orthogonal systems is proposed. The Hernpecsal

Chebyshev collocation methods for solving differentMethod is considered by D. Funaro and O. Kavianfg4]
problems of differential, integro-differential edioms and S°lVing some diffusion evolution equations in unhded

some other physical problems with variable, foriasted d0mains, also the Hermite spectral method for neai
readers we refer to [1,2,3]. Chebyshev polynomjairoach Partial differential equation is presented by BGho [5].
for higher order linear Fredholm- Volterraintegriffatential ~ -@guerre-Galerkin method is investigated for nagdin
equations is introduced by GamzeYiiksel at el. THe use partial differential equations on a semi infinitetarval by
of rational Chebyshev collocation method to get a#'Y',Guo and J. Shen [6], J. Sh(_an [7] studied thb|l$ty.a.nd
approximate solution of Magnetohydrodynamic (MHRy¢  efficiency of spectral methods in unbounded domaisisg
of an incompressible viscous fluid over a stretghsheet is L@guerre functions for solving nonlinear partiaffefiential
considered by SaeidAbbasbandy at el. [2]. In [3Rd and €duations., B.Y. Guo [8] used Jacobi spectrat@pmation
Razzaghi introduced rational Chebyshev functions agw and its applications to §o|ve differential equasi@m half line,
computational method for solving Volterra model ford-P- Boyd [9, 10] applied the methods based orogahal
population growth of a species within a closed eystvhere rational functions on a semi-infinite interval asgpectral
the Volterra population model is first converted &m methods using rational basis functions on an itdimterval
equivalent nonlinear ODE, the solution of whichtien fOr approximating the solution of nonlinear partial

approximated by a rational Chebyshev functions witlflifferential equations. H.I. Siyyam [11] investigdtthe use
unknown coefficients. of Laguerre tau methods for solving higher-ordedirmary

1. Introduction
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differential equations, Rational Chebyshev tau mwettor
solving higher-order ordinary differential equasonis
presented by K. Parand and M. Razzaghi [12]. ahitich,
M. Sezer and M. Kaynak [13] used Chebyshev polyatsni
for solving of linear differential equations. Orethther hand,

Mohamed A. Ramadahal.. An Approximate Analytical Solution of Higher-QedLinear Differential Equations with

Rational Chelgysfollocation Method

that a linear change in variables has transforrhedgiven
interval into the interval [-1, 1], so that the wiing

function becomes(x)=1/v1-x? .
In other words a great variety of other types afste—
square polynomial approximation can be formulateterms

SalihYalginbg, et al. and M. Sezer et al. [14, 17] investigatedf other weighting functions. In particular, forethiveighting

the use of the rational Chebyshev collocation nettttoget
approximate solution of higher order linear diffetial
equations, respectively.

The organization of this paper is as follows. Irctim 2,
Preliminaries introduced while in Section 3 Projesrof the
rational Chebyshev (RC) functions are presentedSdction
4, we formulated the fundamental matrix relatiorsdzh on
collocation Points. In Section 5, main results presented.
Section 6 contains numerical illustrations and ltesare
compared with the exact solution. Finally, sectigh
concludes this article with a brief summary.

2. Preliminaries

The rational Chebyshev collocation method preseiied

function w(x)=(1-x)"(1+x)’ ,(a>-1,8>-1 over [-1, 1],
which reduces to Legendre case whernf=0 and to the
Chebyshev case whem=p8=-1/2 . The well-known
Chebyshev polynomials are orthogonal in the intiefa 1]
with respect to the weight functioi(x)=1/+1-x2 and can be
determined with the aid of the recurrence formulae

To()=1 Tx)=x, T &)= XxT &)y T &) =1
The RC functions are defined byor clearly

RM=T(%1])

x+1

RM=IRE=211 Ru={ X1 R K-RL (0, 1 (3.1.1)

[17] will be developed and improved in terms of the

derivatives in obtaining the fundamental matrixivzm%ve
relations of RC, and then it will be applied toveIm" -
order linear nonhomogeneous differential equatiénthe
form:

D RMY¥(x) =g(x), 0< x< oo, (2.1)
k=0
With the mixed conditions
m-1J
> Suyi(e;)= 4, (2.2)
k=0j=0
0<cj<,,j=0,1,...) ;i=0,1,..m1,

whereR (X) and g(x) are continuous functions fh); ,

The solution of equation (2.1) and (2.2) is expressed i

terms of the rational Chebyshev functions as follows:

y(x):iaan(x), 0<Xx<o (2.3)
n=0

wherea,, , n=0,1,...N are the coefficients to be determined;
R,(X) , n=0,1,...N are the rational Chebyshev functions;

ui'f,cj and A; are appropriate constants.

3. Properties of the Rational Chebyshev
(RC) Functions

3.1. Rational Chebyshev Functions

In the case when errors near the ends of an intfay®]
are of particular importance, a weighting functiehnich is of
the form1/J(x-a)(b-x) is often useful. It is supposed again

Rational Chebyshev functions are orthogonal wigpeet to
the weight function w(x) =]/((x+1)\/;) in the interval
[0,), with the orthogonally property:

JROIR, (w0 =2,
with
{2, m= 0
c, =
1, m= 1

whered,, is the Kronecker function.

Since the set of RC functions is orthogonal and complete,
y(x) defined over the intervei0,) can be expanded as:

y() =3 aR (),

n=0

where
3 :qzﬂj R ()y(Iw(c

3.2. Fundamental matrix Derivative Relation of RC

The derivative of the vectd(®=[R(¥) R(X) ... Ry()]
can be expressed by
R () :% =R(x)D" + B(x) (3.2.1)
where D is (N+1)x(N+1) operational matrix for the
derivative, and B ig€x(N +1) row vector which is an actual
term to get the equality sign of Eq. (3.2.1) that wassimés
and dropped out in Eq. (8), page 1133 of [17]. Thimtell
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improve the approximate obtained solutions as lvélshown
in the numerical examples section. The two D an@r8
deduced as shown below.

Differentiating Eq. (3.1.1) we get:

4

R;ﬂ(x) = (X+l)2

Rn(x)+2[§—jjaz(x) “Ru(9 31,

2
The derivative of R(X) is -— which can be expressed

(x+1)?
as follows:

R(= 2 =3

1
(x+17 4 R(X)—R(x) +ZR2(X)’

Form the above; the elemertts of the matrix D can be
obtained from

R,(X) =0,
R09=3R(X)~R(*+3 R
R..(0) = 2(R ()R, () ~R.,(x),

(3.2.2)

n>1,

where

R, = 5 [Roun * Ry

The general form of the matrix D is a lower- Helsemny
matrix which can be expressedDasD,+D,, whereDis a
tridiagonal matrix which is obtained from

D, =dag7(-0.-(-0.3(-D), =121
and thedij elements of matribD, are obtained fromd,, = -1
and

j>i-1

d. = 0
T k(i-De,,  j<i-1

wherek = (-1)™1*,¢c; =1 and C; =2 for j 2 2.
For N =5 we have

0 0 0 O 0 O
34 -1 14 0 0 O
|-2 712 -2 w2 0o o0
D=3 _6 204 -3 34 of
-4 8 -8 7 -4 1

5 -10 10 -10 35/4 -5

andB(X) is set to be of the form:

BO=[0 0 - 0 dyinraRua®] g

Consequently, thek™ derivative of the matrixR(x)
defined in (3.2.1), can be obtained as
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RO(x)=R(x),

k-1
RM()=Re)(DT)+ > BU) (D7) k=1

i=0

(3.2.3)

where

B(k)(x)zlo o - 0 dN+LN+2Rr(\|kJ)fl(X)J1X(N+1)

4. Fundamental Matrix Relation Based
on Collocation Points

Let us first assume that the solutipiix) of Eq. (2.1) can
be expressed in the form (2.3), which is a trurdtate
Chebyshev series in terms of RC functions. Thér) and its
derivative can be put in the matrix forms

[Y(¥)]=R(X)A (4.1)

and
[y (] =RV(x)A j=01...msN 4.2)
where
RO =[RP(x) RO .. ROX)
A:[ao & aN]T

Substituting relation (4.2.3) into Eq. (5.2), we ge
k-1 . :

[y ={R(x)(D")* + X BY(x)(D")""}A (4.3)
i=0

Now, let us define the collocation poirfgas

X, :%s, s=0,1,.. N (4.4)

sothatO< x;<c<oo;cOIR".

Hence, upon substituting these points into Eq.)(4ol
obtain

(4.5)

The obtained system (5.5) can be written farthethim
matrix form

m
>PY®=cG

(4.6)
k=0
where
R(x) 0 0 y® (%) 9(%)
P, 8 Pkéxl) ? Cy® = y(k):(xl) &= g(sxl) _
0 0 - R(xyy y(k).(xN) a(xy)
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Now putting the collocation points, s= 012...,N,in the UA=4; or [U;Al i=01..m-1 (5.2)
relation (10) we get the system
) where
_1 - .
YO ={RO)(DN) + Y BY(x) (DT )"} A TR
i=0 i =

= k-1
2 D CI{RE)(D)" + 2 BY () (D))
In short, we have
Now, the solution of Eq.(2.1) under the conditiq@s?),
y ® ={R(D7)k+ki8(i)(DT Y11 A @.7) can then be obtained by replacing the rows of wexdri
= (5.2)by the lastm rows of the matrix (5.1), we get the
required augmented matrix

where ) .
Woo Wor o WMoy 5 9(X)
RO | | R(%) R(%) - Ry(x) Wi W Wy 5 g0)
r=| ROD [Z| R RO . Ry(x) :
B/\N/,é - Wr:j—m,o Wl:]—m,l Wll\lJ-m,N v g();N—m) . (53)
ROW] [R(w) RO - Ri%) oot on °
Uio Uy Uiy A
B(X) | | Bolx) Bilx) .o Bn(%)
g | BOW || Boba) Bi(x) .. Bu(x) [ Un-o Unia oo Unaan 5 Ama
B(;<N) BO(;<N) Bl(;<N) BN(.xN) If rank W =rank[W;G] = N +1, then we can write the
matrix equation (5.1) as:
Hence, from the matrix forms (4.6) and (4.7) weagbthe o
fundamental matrix equation for Eq.(2.1) as A=W)G (5.4)
Zm: P{R(D")¥ +§ BY (D <1} A=G:; (4.8) and therefore the coefficien®, ; n =0, 1,..., N are uniquely
k=0 i=0 determined by Eq.(6.3)
Also, we obtain matrix forms corresponding the rmdixe )
conditions (2.2) as follows: 6. Numerical Exampl&
Set X =C; in relation (4.3) we get the fundamental matrix | this section, numerical examples are given Itgstitate
equation corresponding to the mixed conditions)(2.2 the applicability, accuracy and effectiveness @f pioposed
L3 ot technique. All examples are performed on the comput
m- - ; X .
zzailj({R(Cj)(DT)k+ZB(i)(Cj)(DT )k—i—l}Az/]i; usmg a progra.m written in MATHEMATICA 7.0. The
k=0j=0 = obtained numerical results are presented as showhe
illustrative Tables and graphs The absolute eirotaples,
i=0, 1, 2,..., m-1, (4.9) are given by the values of|y(t)-yy(t) evaluated at
selected points.
so that OSCJ‘ <°°1j :O, 1,..., J. Examp|e1
Let us consider the following two point boundaryiuea
5. Main Results problem [12]
The fundamental matrix equation (4.8) for Eq. (2.1) y'(X) - 1_X2 y(x):%, xO[01]
corresponds to a system o#+1) algebraic equations for the @+x) (x+)

(N+1) unknown coefficientsy,&,....ay. O Ly < 1
One writes Eq. (4.8) in short form as: withy ( )_ly()_E

For this example we have,

WA=G or [W;G] (SN0
so that m=2 Po(x)zﬁ, RO=0, P()=1 g(x):ﬁ'
W = [W,,] =zm: P{R(D")* +§B<i> (D)} pg=01..,N Then, forN = 4, the collocation points are
k=0 =0
We can obtain the matrix form for the mixed coratis Xo =0,X1=%,x2 =§,x3 =Z'X4 =1

(2.2), by means of Eq. (4.9),briefly, as
and the fundamental matrix equation of problem is
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{P,R+P,(RD" +B)+P,(R(D")?+BD" +B')}A=G A_F 1 00 O}
2
whereP,, P, P,, R, B, D are matrices of order 5x5 given, for
this example, Therefore, we find the solution
-, , y
0 - -2 3 -4
1 -1 1 -1 1 —
. .3 _7 17 527 0 _41 7 s g Y(X)—Zaan(X)
P FE P :
R=j1 -1 -7 28 I p'=jo I -2 2 g
3 9 27 81 4 4
L33t o N to be of the form
7 49 343 2401 2 1 1
o oot 00 0 2 -4 Y(%) =2 Ro(¥) ~ZR(X)
L 4 i 2 2
[ 5 65 ] H
0 -2 3 21 59 0000 o or in the form
15 27 387
15 _27 387 _ ooo0o0 =L
D82 s & w9 =t
DT)2=|p -2 =2 =2 20 B={0 000 -2 | x+1
Y ° 14 25 13% 4 ﬁéil
03 3 § 88 0000 o0 which is exact solution of the two-point boundarglue
0o o 3 _21 8 0ooo problem [12].
L 8 4 4 Example 2
1 0 0 0 0 Consider the differential equation [12]
0o 12 o 4 o 00000 10000
25 000O0O 01000 " 4 —
- X) +2xy'(x) =0 xtJ[o
PO:OOKZOO, PR={0 0000 P,=|0 0100 y() Xy() ’ [’1)
0 0 0 -4 0 000O0O 00010 2 9
49 000O0O 00O0O01 I 0)=0, '(0) =—— 1 =_— (2
o o o X with ¥(©) y©=7-, and exact solution( ﬁrlexp(t )dt

The RC collocation method is applied to solve this

The augmented matrix forms of the conditions Kbe 4 problem. In Table 1, the obtained numerical rasalte

are compared, folN = 12 andN = 8, with the rationalized Haar,
h-11-11; 1 rational Chebyshev tau method and rational Chelwshe
' collocation method witiN = 8 and the exact solution are
[ _ ) 1} tabulated. The errors in numerical solution of Egén? are
10 -101; = . . . .
2 shown in Fig.1. The error decreases when the intBiges
increased.
Then, we obtain the augmented matrix (6.3) as
(-1 -3 31 -131 383 ; 1 |
_12 44 7252 16716 395444 = 16
25 25 625 625 15625 ' 25
~a1-| 2 10 398 1102 2230 | 4.
WGl=| -2 -=— =2 - = =
9 9 81 243 243 9
1 -1 1 -1 1 1
1 0 -1 0 1 1
L 2 |

we then obtain the solution foNA=G
Tablel. Comparison between Exact solution and approximate sol utions obtained by present method and other existed methods for y(x) of Example 2

X Exact solution RationalizedHaar[14] RC collocation[17] RC Tau method[12] PresentMethod N=8 PresentM ethod N=12
0

0 o0 0 0 0 0

0.1 0.112462915907 0.11244 0.1124386 0.1124630 0.1124629 0.112462915694
0.2 0.222702588994 0.22268 0.2228901 0.2227026 0.2227025 0.222702583294
0.3 0.328626759150 0.32861 0.3285654 0.3286269 0.3286267 0.328626749513
0.4 0.428392354662 0.42837 0.4283688 0.4283925 0.4283923 0.428392342611
0.5 0.520499877374 0.52047 0.5204235 0.5204998 0.5205003 0.520499863825
0.6 0.603856090376 0.60384 0.6038157 0.6038561 0.6038590 0.603856057504
0.7 0.677801193354 0.67779 0.6776712 0.6778012 0.6778169 0.677800964362
0.8 0.742100964232 0.74208 0.7422375 0.7421011 0.7421682 0.742099890587
0.9 0.796908211971 0.79689 0.7968211 0.7969085 0.7971486 0.796905383903

Example 3

Consider the differential equation [17] @+X)Y"(X) + Y'(X) —Xiﬂy'(x) +xy(x) =xIn(x+1) xO[01]
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y©)=0 y©0)=1 y'@0=-1 shows the resulting graph of Example 3 for N=7 &ni$
compared with R C collocation method [17] and exact

we obtain the approximate solution by rational Giséiev  solution. It seen from table 2 the present mett®détter

collocation function of the problem for N= 7, 12 table 2 than R C collocation method [17]. Additionally iables 3

the numerical results obtained by the present nieloN=7,  and we Figure 3 compared the absolute errors fat iN<he

12 are compared with the R C collocation method HW  (jfferent methods.

the exact solutiory(x) =In(x +1) of this problem. Figure 2

Table 2. Comparison between Exact solution and approximate sol utions obtained by present method and R C collocation method [17] for y(x) of Example 3

X Exact solution R C collocation method[17] N=7 Present Method N=7 Present Method N=12
0 0 0 0 0

0.1 0.09531017 0.09518485 0.09530890 0.09531019
0.2 0.18232155 0.18173604 0.18231240 0.18232170
0.3 0.26236426 0.26105289 0.26234005 0.26236469
0.4 0.33647223 0.33419588 0.33642664 0.33647311
0.5 0.40546510 0.40197707 0.40539201 0.40546660
0.6 0.47000362 0.46505273 0.46989724 0.47000589
0.7 0.53062825 0.52396995 0.53048305 0.53063142
0.8 0.58778666 0.57919041 0.58759641 0.58779089
0.9 0.64185388 0.63110549 0.64160998 0.64185930
1 0.69314718 0.68004804 0.69283674 0.69315391

Table 3. Comparison between absolute error functions obtained by present method and R C collocation method for (k) of Example 3

X e7for RCCollocation [17] e for presentM ethod e, for presentM ethod
0 0 0 0
0.1 1.2533e-004 1.27825e-006 1.99921e-008
0.2 5.85517e-004 9.15934e-006 1.45714 e-007
0.3 1.31137e-003 2.42051e-005 4.2912 e-007
04 2.27636e-003 4.55917e-005 8.80284 e-007
0.5 3.48804e-003 7.31029e-005 1.49357 e-006
0.6 4.9509e-003 1.06389e-004 2.26119 e-006
0.7 6.6583e-003 1.45201e-004 3.17598 e-006
0.8 8.59625e-003 1.90248e-004 4.2315 e-006
0.9 1.07484e-002 2.43902e-004 5.42143 e-006
1 1.30991e-002 3.10434e-004 6.73649 e-006
08t _ 07t
- —Exact soluti
‘/, 06 L Xact solution
06 /'/ —Exact solution 05 ¢
- Rationalized Haar, 04 |

04 F /,/ wemR C Tau 12 03}

// == =Present method 02 b
02+ ’/ = =R C collocation 1 o1l

/ L L L L L
! L L ! ! 02 04 0.6 0.8 1.0
02 04 0.6 08 10

Fig. 1. Solution graph obtained of example 2 by present method in

Fig. 2. Solution graph obtained of example 3 by present method in
comparison with R C collocation method [17] and exact solution.

comparison with Other method solutions and exact solution
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02 04 0.6 0.8 1.0

Fig. 3a. Error function of Ex.3 for present method and R C collocation Fig. 3b. Error function of Ex.3 for present method for N=7

method for N=7
Table 4. Comparison between Exact solution and approxi mate sol utions obtained by present method for (%) of Example 4

X Exact solution Present Method N=8 Present MethodN=12 Present MethodN=16
0 1 1 1 1

0.1 0.970743243243 0.970723714463 0.970742603515 0.970743229297
0.2 0.895483870968 0.895456027695 0.895482803354 0.895483841796
0.3 0.791025179856 0.791003373112 0.791023930008 0.791025145152
0.4 0.670769230769 0.670762060806 0.670767982874 0.670769195202
0.5 0.544642857143 0.544656497125 0.544641741268 0.544642824054
0.6 0.419591836735 0.419629618122 0.419590941046 0.419591808415
0.7 0.300239726027 0.300303891194 0.300239107336 0.300239703980
0.8 0.189508196721 0.189595577331 0.189507889173 0.189508181869
0.9 0.089123616236 0.089207848147 0.089123614676 0.089123609079
1 0 0 0 0

Table 5. Comparison between absolute error functions obtained by present
method for y(x) of Example 4 for N=8, 12 and 16

16 using the present method together with the exalaes of
y(x)

1 9
X & P G A+ x+x)y(¥) ==x* ->x* +x+1
0 0 0 0 4 4
0.1 1.95288e-005 6.39728e-007 1.73943e-008 ) )
07 DR IEEeTIE e - are tabu(ljated. The error decreases when the intsger
0.3 2.18067e-005 1.24985e-006 3.47043e-008 Increase
04 7.16996e-006 1.2479e-006 3.55664e-008 Example5 _ o
05 1.364e-005 1.11587e-006 3.30891e-008 Consider the first order linear initial value preim ([15],
0.6 3.77814e-005 8.95688e-007 2.83193e-008 P.153)
0.7 6.41652e-005 6.18692e-007 2.20474e-008 , _ _
08 8.738066-005 3.075486-007 1.48522¢-008 (X+Dy'(x) +y(x) =1, y(0) =0 xI[0]]
0.9 8.42319e-005 1.56041e-009 7.15764e-009 ) ) )
1 0 0 0 Following the procedures in the previous examples,
obtain the solution of this equation in the form
Example 4

Consider the differential equation [16]
(L+x+X7)y" (x) + (3+ 6x)y" (x)+ 6y’ )= & x [0,

y0)=1 y(©)=0

Then we have m =

y()=0

3,P, =0,P, =6,P, =3+6x,P, =1+ x+ x*,g(X) = 6%, with exact
solution

We applied the RC collocation method and solved thi
problem. In Table 4, 5 the resulting values fbr 8, 12 and

(1+x+x2)y:%x4—%x2+x+1

.
A=F L 00 0}
2 2
Therefore, we find the solution

S
Y=o

which is the exact solution of Example 5.

Example 6
Consider the fifth order linear differential equati

2x-14

(x+1)? yO(x) = 2, x0[0y

180 1+X)
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1 Y)/(1):—1

yO=1 y©=-5 ,y'(0)=18 YO=-7 2

Following the procedures in the previous examples,
obtain the solution of this equationNit=8 in the form

1 T
A=[0—2 000000}

N

Therefore, we find the solution

1-3x
(x+1)?

y(x) =
which is the exact solution of Example 6.

7. Conclusion

(3]

[4]

[5]

(6]

[7]

(8]

In this paper the use of rational Chebyshev (RC)

collocation method for solving high-order lineardimary
differential equations with variable
investigated. The high-order linear ordinary défetial
equations and the given conditions to are transédrrto
matrix equations with unknown rational
coefficients. This proposed technique is considdretie a
modification of the similar one presented in [17]This
variant or improvement for the method gave us gefasnd

more accuracy much faster than the other methoals.

addition, an interesting feature of this methodoidind the
analytical solutions if the equation has an exattt®n that
is a rational functions. lllustrative examples arsed to
demonstrate the applicability and the effectivenekghe
proposed technique. The method can be extendeddarase
of systems of linear differential equations withrighle
coefficients which is under investigation by théhmus.
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