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Abstract: The purpose of this paper is to investigate the use of rational Chebyshev (RC) collocation method for solving 
high-order linear ordinary differential equations with variable coefficients. Using the rational Chebyshev collocation points, 
this method transforms the high-order linear ordinary differential equations and the given conditions to matrix equations with 
unknown rational Chebyshev coefficients. These matrices together with the collocation method are utilized to reduce the 
solution of higher-order ordinary differential equations to the solution of a system of algebraic equations.  The solution is 
obtained in terms of RC functions.  Numerical examples are given to demonstrate the validity and applicability of the method. 
The obtained numerical results are compared with others existing methods and the exact solution where it shown to be very 
attractive and maintains better accuracy. 
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1. Introduction 
The application of Chebyshev polynomial and rational 

Chebyshev collocation methods for solving different 
problems of differential, integro-differential equations and 
some other physical problems with variable, for interested 
readers we refer to [1,2,3].  Chebyshev polynomial approach 
for higher order linear Fredholm- Volterraintegro-differential 
equations is introduced by GamzeYüksel at el. [1]. The use 
of rational Chebyshev collocation method to get an 
approximate solution of Magnetohydrodynamic (MHD) flow 
of an incompressible viscous fluid over a stretching sheet is 
considered by SaeidAbbasbandy at el. [2]. In [3] Parand and 
Razzaghi introduced rational Chebyshev functions as a new 
computational method for solving Volterra model for 
population growth of a species within a closed system where 
the Volterra population model is first converted to an 
equivalent nonlinear ODE, the solution of which is then 
approximated by a rational Chebyshev functions with 
unknown coefficients. 

Solving higher-order differential equations is recently 
investigated where number of different methods associated 
with orthogonal systems is proposed.  The Hermite spectral 
method is considered by D. Funaro and O. Kavian [4] for 
solving some diffusion evolution equations in unbounded 
domains, also the Hermite spectral method for nonlinear 
partial differential equation is presented by B.Y. Guo [5]. 
Laguerre-Galerkin method is investigated for nonlinear 
partial differential equations on a semi infinite interval by 
B.Y. Guo and J. Shen [6], J. Shen [7] studied the stability and 
efficiency of spectral methods in unbounded domains using 
Laguerre functions for solving nonlinear partial differential 
equations. , B.Y. Guo [8] used  Jacobi spectral approximation 
and its applications to solve differential equations on half line,  
J.P. Boyd [9, 10] applied the methods based on orthogonal 
rational functions on a semi-infinite interval and spectral 
methods using rational basis functions on an infinite interval 
for approximating the solution of nonlinear partial 
differential equations. H.I. Siyyam [11] investigated the use 
of Laguerre tau methods for solving higher-order ordinary 
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differential equations, Rational Chebyshev tau method for 
solving higher-order ordinary differential equations is 
presented by K. Parand and M. Razzaghi [12].  In addition, 
M. Sezer and M. Kaynak [13] used Chebyshev polynomials 
for solving of linear differential equations. On the other hand, 
SalihYalçınbaş, et al. and M. Sezer et al. [14, 17] investigated 
the use of the rational Chebyshev collocation method to get 
approximate solution of higher order linear differential 
equations, respectively. 

The organization of this paper is as follows. In Section 2, 
Preliminaries introduced while in Section 3 Properties of the 
rational Chebyshev (RC) functions are presented.. In Section 
4, we formulated the fundamental matrix relation based on 
collocation Points. In Section 5, main results are presented. 
Section 6 contains numerical illustrations and results are 
compared with the exact solution. Finally, section 7 
concludes this article with a brief summary. 

2. Preliminaries 
The rational Chebyshev collocation method presented in 

[17] will be developed and improved in terms of the 
derivatives in obtaining the fundamental matrix derivative 
relations of RC, and then it will be applied to solve 

thm  -
order linear nonhomogeneous differential equation of the 
form: 
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,0 ∞<≤ jc j =0,1,…,J    ; i =0,1,…,m-1, 

where )(xPk  and g(x) are continuous functions on );,0[ ∞ ,  

The solution of equation (2.1) and (2.2) is expressed in 
terms of the rational Chebyshev functions as follows: 
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where na , n=0,1,…,N  are the coefficients to be determined; 

)(xRn  , n=0,1,…,N  are the rational Chebyshev functions; 

ij
k
ij  and cu λ,  are appropriate constants. 

3. Properties of the Rational Chebyshev 
(RC) Functions 

3.1. Rational Chebyshev Functions 

In the case when errors near the ends of an interval [a, b] 
are of particular importance, a weighting function which is of 
the form ))((/1 xbax −− is often useful. It is supposed again 

that a linear change in variables has transformed the given 
interval into the interval [-1, 1], so that the weighting 
function becomes( ) 21/1 xxw −= .  

In other words a great variety of other types of least – 
square polynomial approximation can be formulated in terms 
of other weighting functions. In particular, for the weighting 
function ( ) ( ) ( ) ( )-1-1,,       11 >>+−= βαβα xxxw  over [-1, 1], 

which reduces to Legendre case when 0== βα  and to the 
Chebyshev case when 2/1−== βα . The well-known 
Chebyshev polynomials are orthogonal in the interval [-1, 1] 
with respect to the weight function ( ) 21/1 xxw −= and can be 
determined with the aid of the recurrence formulae 
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Rational Chebyshev functions are orthogonal with respect to 

the weight function ))1((1)( xxxw += in the interval 

),,0[ ∞ with the orthogonally property: 
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where nmδ is the Kronecker function. 

Since the set of RC functions is orthogonal and complete, 
y(x) defined over the interval ),0[ ∞  can be expanded as: 
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3.2. Fundamental matrix Derivative Relation of RC 

The derivative of the vector [ ])(...)()()( 10 xRxRxRxR N=  
can be expressed by  

)()(
)(

)( xBDxR
dx

xdR
xR T +==′                  (3.2.1) 

where D is )1()1( +×+ NN operational matrix for the 
derivative, and B is )1(1 +× N  row vector which is an actual 
term to get the equality sign of Eq. (3.2.1) that was missing 
and dropped out in Eq. (8), page 1133 of [17]. This term will 
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improve the approximate obtained solutions as will be shown 
in the numerical examples section. The two D and B are 
deduced as shown below. 

Differentiating Eq. (3.1.1) we get: 
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where 
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The general form of the matrix D is a lower- Heisenberg 
matrix which can be expressed as 21 DDD += , where 1D is a 
tridiagonal matrix which is obtained from 
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Consequently, the thk  derivative of the matrix R(x) 
defined in (3.2.1), can be obtained as  
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4. Fundamental Matrix Relation Based 
on Collocation Points 

Let us first assume that the solution y (x) of Eq. (2.1) can 
be expressed in the form (2.3), which is a truncated 
Chebyshev series in terms of RC functions. Then y (x) and its 
derivative can be put in the matrix forms 
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Now putting the collocation points ,,,2,1,0    , Nsxs …= in the 
relation (10) we get the system 
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Hence, from the matrix forms (4.6) and (4.7) we obtain the 
fundamental matrix equation for Eq.(2.1) as 
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Also, we obtain matrix forms corresponding the mixed 
conditions (2.2) as follows: 

Set jcx = in relation (4.3) we get the fundamental matrix 

equation corresponding to the mixed conditions (2.2): 
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so that  ,0 ∞<≤ jc j =0, 1,…, J. 

5. Main Results 
The fundamental matrix equation (4.8) for Eq. (2.1) 

corresponds to a system of (N+1) algebraic equations for the 
(N+1) unknown coefficients .,...,, 10 Naaa  

One writes Eq. (4.8) in short form as: 
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We can obtain the matrix form for the mixed conditions 
(2.2), by means of Eq. (4.9),briefly, as 
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Now, the solution of Eq.(2.1) under the conditions (2.2), 
can then be obtained by replacing the rows of matrices 
(5.2)by the last m rows of the matrix (5.1), we get the 
required augmented matrix  
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matrix equation (5.1) as:  
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and therefore the coefficients na  ; n =0, 1,…, N are uniquely 

determined by Eq.(6.3) 

6. Numerical Examples 
In this section, numerical examples are given to illustrate 

the applicability, accuracy and effectiveness of the proposed 
technique. All examples are performed on the computer 
using a program written in MATHEMATICA 7.0. The 
obtained numerical results are presented as shown in the 
illustrative Tables and graphs The absolute errors,in tables, 
are given by the values of  )()( tyty N−  evaluated at 
selected points. 
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Let us consider the following two point boundary value 

problem [12] 
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The augmented matrix forms of the conditions for N = 4 
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we then obtain the solution for  WA=G 
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
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Therefore, we find the solution 

∑
=

=
4

0
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n
nn xRaxy  

to be of the form 

)(
2
1

)(
2
1

)( 10 xRxRxy −=  

or in the form 

1
1

)(
+

=
x

xy  

which is exact solution of the two-point boundary value 
problem [12]. 

Example 2 
Consider the differential equation [12] 

0)(2)( =′+′′ xyxxy ,                      )1,0[∈x  

with π
2

)0(,0)0( =′= yy      , and exact solution ∫ −=
x

dttxy
0

2)exp(
2

)(
π  

The RC collocation method is applied to solve this 
problem.  In Table 1, the obtained numerical results are 
compared, for N = 12 and N = 8, with the rationalized Haar, 
rational Chebyshev tau method and rational Chebyshev 
collocation method with N = 8 and the exact solution are 
tabulated. The errors in numerical solution of Example 2 are 
shown in Fig.1. The error decreases when the integer N is 
increased. 

Table1. Comparison between Exact solution and approximate solutions obtained by present method and other existed methods for )(xy of Example 2 

X Exact solution RationalizedHaar[14] RC collocation[17] RC Tau method[12] PresentMethod N=8 PresentMethod N=12 
0 0 0 0 0 0 0 
0.1 0.112462915907 0.11244 0.1124386 0.1124630 0.1124629 0.112462915694 
0.2 0.222702588994 0.22268 0.2228901 0.2227026 0.2227025 0.222702583294 
0.3 0.328626759150 0.32861 0.3285654 0.3286269 0.3286267 0.328626749513 
0.4 0.428392354662 0.42837 0.4283688 0.4283925 0.4283923 0.428392342611 
0.5 0.520499877374 0.52047 0.5204235 0.5204998 0.5205003 0.520499863825 
0.6 0.603856090376 0.60384 0.6038157 0.6038561 0.6038590 0.603856057504 
0.7 0.677801193354 0.67779 0.6776712 0.6778012 0.6778169 0.677800964362 
0.8 0.742100964232 0.74208 0.7422375 0.7421011 0.7421682 0.742099890587 
0.9 0.796908211971 0.79689 0.7968211 0.7969085 0.7971486 0.796905383903 

 
Example 3 
Consider the differential equation [17] ]1,0[)1ln()()(

1

1
)()()1( ∈+=+′

+
−′′+′′′+ xxxxxyxy

x
xyxyx         
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  1)0(,1)0(,0)0(   y      y    y −=′′=′=  

we obtain the approximate solution by rational Chebyshev 
collocation function of the problem for N= 7, 12. In table 2 
the numerical results obtained by the present method for N=7, 
12 are compared with the R C collocation method [17] and 
the exact solution )1xln( y(x) +=  of this problem. Figure 2 

shows the resulting graph of Example 3 for N=7 and it is 
compared with R C collocation method [17] and exact 
solution. It seen from table 2 the present method is better 
than R C collocation method [17]. Additionally in tables 3 
and we Figure 3 compared the absolute errors for N=7 in the 
different methods. 

Table 2. Comparison between Exact solution and approximate solutions obtained by present method and R C collocation method [17] for )(xy of Example 3 

X Exact solution R C collocation method[17]  N=7 Present Method N=7 Present Method N=12 

0 0 0 0 0 

0.1 0.09531017 0.09518485 0.09530890 0.09531019 

0.2 0.18232155 0.18173604 0.18231240 0.18232170 

0.3 0.26236426 0.26105289 0.26234005 0.26236469 

0.4 0.33647223 0.33419588 0.33642664 0.33647311 

0.5 0.40546510 0.40197707 0.40539201 0.40546660 

0.6 0.47000362 0.46505273 0.46989724 0.47000589 

0.7 0.53062825 0.52396995 0.53048305 0.53063142 

0.8 0.58778666 0.57919041 0.58759641 0.58779089 

0.9 0.64185388 0.63110549 0.64160998 0.64185930 

1 0.69314718 0.68004804 0.69283674 0.69315391 

Table 3. Comparison between absolute error functions obtained by present method and R C collocation method for )(xy of Example 3 

X 7e for RCCollocation [17] 
7e  for presentMethod 

12e  for presentMethod 

0 0 0 0 

0.1 1.2533e-004 1.27825e-006 1.99921e-008 

0.2 5.85517e-004 9.15934e-006 1.45714 e-007 

0.3 1.31137e-003 2.42051e-005 4.2912 e-007 

0.4 2.27636e-003 4.55917e-005 8.80284 e-007 

0.5 3.48804e-003 7.31029e-005 1.49357 e-006 

0.6 4.9509e-003 1.06389e-004 2.26119 e-006 

0.7 6.6583e-003 1.45201e-004 3.17598 e-006 

0.8 8.59625e-003 1.90248e-004 4.2315 e-006 

0.9 1.07484e-002 2.43902e-004 5.42143 e-006 

1 1.30991e-002 3.10434e-004 6.73649 e-006 

 

 

Fig. 1. Solution graph obtained of example 2 by present method in 
comparison with Other method solutions and exact solution 

 

Fig. 2. Solution graph obtained of example 3 by present method in 
comparison with R C collocation method [17] and exact solution. 
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Fig. 3a. Error function of Ex.3 for present method and R C collocation 
method for N=7 

 

Fig. 3b. Error function of Ex.3 for present method for N=7 

 

Table 4. Comparison between Exact solution and approximate solutions obtained by present method for )(xy of Example 4 

X Exact solution Present Method N=8 Present MethodN=12 Present MethodN=16 

0 1 1 1 1 

0.1 0.970743243243 0.970723714463 0.970742603515 0.970743229297 

0.2 0.895483870968 0.895456027695 0.895482803354 0.895483841796 

0.3 0.791025179856 0.791003373112 0.791023930008 0.791025145152 

0.4 0.670769230769 0.670762060806 0.670767982874 0.670769195202 

0.5 0.544642857143 0.544656497125 0.544641741268 0.544642824054 

0.6 0.419591836735 0.419629618122 0.419590941046 0.419591808415 

0.7 0.300239726027 0.300303891194 0.300239107336 0.300239703980 

0.8 0.189508196721 0.189595577331 0.189507889173 0.189508181869 

0.9 0.089123616236 0.089207848147 0.089123614676 0.089123609079 

1 0 0 0 0 

 

Table 5. Comparison between absolute error functions obtained by present 
method for )(xy of Example 4 for N=8, 12 and 16 

X 8e  
12e  16e  

0 0 0 0 

0.1 1.95288e-005 6.39728e-007 1.73943e-008 

0.2 2.78433e-005 1.06761e-006 2.91716e-008 

0.3 2.18067e-005 1.24985e-006 3.47043e-008 

0.4 7.16996e-006 1.2479e-006 3.55664e-008 

0.5 1.364e-005 1.11587e-006 3.30891e-008 

0.6 3.77814e-005 8.95688e-007 2.83193e-008 

0.7 6.41652e-005 6.18692e-007 2.20474e-008 

0.8 8.73806e-005 3.07548e-007 1.48522e-008 

0.9 8.42319e-005 1.56041e-009 7.15764e-009 

1 0 0 0 

Example 4 
Consider the differential equation [16] 

2(1 ) ( ) (3 6 ) ( ) 6 ( ) 6  [0,1]x x y x x y x y x x x′′′ ′′ ′+ + + + + = ∈  

    0)1      ,y(0)0(y    ,1)0y( ==′=  

Then we have m = 
3, ,616360 2

3210 x,g(x)xxx,P,P,PP =++=+=== with exact 
solution 

1xx
4

9
x

4

1
y)xx1( 242 ++−=++  

We applied the RC collocation method and solved this 
problem. In Table 4, 5 the resulting values for N = 8, 12 and 

16 using the present method together with the exact values of 
y(x) 

1
4
9

4
1

)()1( 242 ++−=++ xxxxyxx  

are tabulated. The error decreases when the integer N is 
increased. 

Example 5 
Consider the first order linear initial value problem ([15], 

P.153) 

,1)()()1( =+′+ xyxyx 0)0( =y ]1,0[∈x  

Following the procedures in the previous examples, we 
obtain the solution of this equation in the form 

T

A 




= 000
2

1

2

1  

Therefore, we find the solution 

1
)(

+
=

x

x
xy  

which is the exact solution of Example 5. 
Example 6 
Consider the fifth order linear differential equation 
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4
1

)1(
2
1

)1(18)0(5)0(1)0( −=′−==′′−=′= yyyyy ,      ,       ,       ,      

Following the procedures in the previous examples, we 
obtain the solution of this equation at N =8 in the form 

T

A 




 −= 000000
2

1

2

1
0  

Therefore, we find the solution 

2)1(
31

)(
+
−=

x

x
xy  

which is the exact solution of Example 6. 

7. Conclusion 
In this paper the use of rational Chebyshev (RC) 

collocation method for solving high-order linear ordinary 
differential equations with variable coefficients is 
investigated. The high-order linear ordinary differential 
equations and the given conditions to are transformed to 
matrix equations with unknown rational Chebyshev 
coefficients. This proposed technique is considered to be a 
modification of the similar one presented in [17].  This 
variant or improvement for the method gave us a faster and 
more accuracy much faster than the other methods. In 
addition, an interesting feature of this method is to find the 
analytical solutions if the equation has an exact solution that 
is a rational functions. Illustrative examples are used to 
demonstrate the applicability and the effectiveness of the 
proposed technique. The method can be extended for the case 
of systems of linear differential equations with variable 
coefficients which is under investigation by the authors. 
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