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Abstract: Scientists and engineers encounter many kinds of parabolic or hyperbolic distributed dynamics, which are often 

with inhomogeneous boundary conditions in practice. Boundary inhomogeneity makes the dynamics essentially nonlinear, 

which prevents the Hilbert space from being applied for modal decomposition and intelligent computation. Thus, this paper 

systematically deals with this situation via the conversion of the boundary inhomogeneity to a virtual source in conjunction with 

boundary homogeneity. For such a purpose, the 2D transfer-function is developed based on the Laplace-Galerkin integral 

transform as the main tool of this conversion. A section of numerical visualization is included to explore the topology of the 

virtual-source solution. Some interesting findings therein will be addressed. 

Keywords: Inhomogeneous Boundary Conditions, nD Transfer Function Models, Robin Boundary Conditions, 
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1. Introduction 

Civilization has encountered a great quantity of parabolic 

or hyperbolic dynamics in bounded domains- parabolic 

heat-conduction, acoustic wave, structure vibration, quantum 

mechanics, electromagnetic wave, hyperbolic 

heat-conduction, thermoacoustic oscillation, and so on. The 

partial differential equation governing any kind of these 

dynamics includes a spatially Laplacian operator or its higher 

orders, which is often spatially non-uniform. As the boundary 

condition, Dirichlet, von-Neumann, or Robin, of the 

Laplacian operator is homogeneous, its eigenfunctions 

constitute an admissible, real, orthogonal and complete basis 

in the Hilbert space of the operation domain. This basis 

provides modal decomposition of the dynamics for design 

purposes and computational intelligence. In many occasions, 

the boundary conditions are inhomogeneous; for instance, the 

heat-conduction constrained by environmental temperature is 

of inhomogeneous boundary condition, since temperature is 

non-zero in nature. With boundary inhomogeneity, the 

dynamics is essentially nonlinear, which prevents Hilbert 

space from being directly introduced for modal 

decomposition. With this paper, we will remedy this 

situation. 

With the help of the Laplace-Galerkin integral transform in 

[1] and its inverse thereof, the inhomogeneous boundary 

conditions can be converted into virtual sources in 

conjunction with homogeneous boundary conditions. In 

closed form, such a source will be a Dirac Delta distribution 

or its spatial derivatives as a pointed input to the boundary, 

dubbed boundary source. This approach has ever been 

applied to identify thermal inertia in [2], and to derive the 

mechanical energy of thermoacoustics in [3]. In these 

decades, von-Neumann boundary source was employed to 

obtain order-reduced modelling of combustion instabilities in 

rocket motors [4-5]. Following these hints, this paper furthers 

the extension to Robin sources and explores the topological 

occurrence on boundary. Such an exploration counts mostly 

on the concept of 2D transfer-function, wherein, with the 

Laplace-Galerkin transform, both equations governing the 

interior and the boundary are integrated into a single transfer 

function of two independent variables: one is from the time 

and the other is from the space. Performing the inverse 

Laplace-Galerkin transform of the 2D transfer-function 

realizes back the dynamics into homogeneous boundary 

conditions with boundary sources, both of which yield the 

identical solution in the interior. With boundary homogeneity, 

the elegant properties of Hilbert space are preserved to 

facilitate analyses. 

The study on Robin inhomogeneity is fascinating and 

necessary for real practice, wherein the Dirichlet or 
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von-Neumann boundary is considered as a simplified version 

of Robin boundary [6-9]. Therein, the boundary is the 

complement of the union of the exterior and the interior of 

the domain under consideration, so boundary conditions rely 

on the interaction between the process and the environment. 

Although such degenerative Robin helps escape many 

difficulties in numerical investigation, the actual Robin 

boundary should be identified through measured data for 

modern days of practice, as seen in [10-15] for examples. 

Therein, Robin boundaries are identified for the study of 

cancer destruction during hyperthermia treatment, the optical 

path length in inhomogeneous tissue, and axisymmetrical 

induction in heating processes, respectively. To be sure, the 

conversion of Robin inhomogeneity into boundary source 

can help make these important kinds of identification more 

accurate and reliable, since the realization of virtual source in 

principle suggests installing an active source into 

measurement to trig out desired data. 

Virtual-source realization of boundary inhomogeneity also 

helps computational intelligence, addressed below. In cases 

of time-invariant environments, the response is usually 

computed by shifting the origin of spatial coordinate to the 

steady-state response, upon which the dynamics with 

homogeneous boundary condition can be solved by 

Separation of Variables [16]. This method can also be 

extended to time-varying environments by stepwise sampling 

the temporal continuity as in [17-18] for examples. 

Compared with the virtual-source solution, this solution is 

numerically tedious and incapable of capturing sudden 

changes in the environment. More importantly, the 

virtual-source conversion leads to input-output modelling 

that can be programmed into DSP microcontrollers for online 

signal processing. 

Summarily, the virtual-source conversion of boundary 

inhomogeneity provides the following advantages that are 

beyond conventional approaches: 

(1) Even with temporally discontinuous or impulsive 

environments, exact solutions can be calculated 

offline with the virtual-source realization. 

(2) Modal decomposition is applicable for computational 

intelligence and order-reduced modelling.  

(3) Active sources on boundary can be installed for 

identification of Robin coefficients. 

(4) An overall distributed dynamics can be properly 

represented as feedback interconnection of 

sub-systems especially for impedance-matching 

design [3]. 

(5) As the control actuation is set on some boundary, the 

virtual-source realization generates a model served for 

feedback synthesis. 

(6) It makes possible to apply the well-established digital 

signal processing (DSP) for online temporally varying 

environments. 

(7) With the extended Kalman filtering, the 

environmental changes can be online estimated from 

the response of the dynamics, toward a newly sensing 

technology. 

2. Mathematical Prerequisites 

Consider a Laplacian operator A  on spatial functions of a 

bounded region 3ℜ⊂Ω . The operator A  is belonging to 

the Sturm-Liouville class [19] if its eigenfunctions constitute a 

real, orthonormal, and complete basis of )(2 ΩL  under some 

inner-product 
Ω

⋅⋅, . We often distinguish a Sturm-Liouville 

operator by its self-adjointness and the compactness of its 

inverse. In the followings we give two examples often 

encountered in mechanical engineering. 

Consider the elastic stiffness A : 

)()/1( φρφ ∇⋅∇−= kA  in Ω , 

0ˆ =⋅∇+ nφβαφ  on Ω∂ , 

where 0)( >xρ  and 0)( >xk  for Ω∈∀x  as well as 

)(xα  and )(xβ  are real but not both zero for Ω∂∈∀x . 

Then the elastic stiffness belongs to Sturm-Liouville class, 

A SL( )∈ Ω , under the inner-product: 

∫Ω= dVxxx )()()(, * ψφρφψ .        (1) 

The proof of this claim follows.  

Let , D(A)ψ ϕ∈ , that is,  
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which implies 0ˆˆ ** =⋅∇−⋅∇ nn ψφφψ  on Ω∂  for any 

)(, AD∈φψ , since )0,0(),( ≠βα . Then, based on the 

Green’s second identity,  

0ˆ)(
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,,
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−

∫

∫
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so A , ,Aψ ϕ = ψ ϕ , i.e. A  is self-adjoint. Denote by Λ  

the set of eigenvalues of A , with the corresponding 

eigenfunctions set ≡Φ { }D(A)λ λ∈Λ
ϕ ∈ , i.e.  

λλ λφφ =A  in Ω , 0ˆ =⋅∇+ nλλ φβαφ  on Ω∂ . 

Firstly, with A ’s self-adjointness, 

λλ

λλλλλλλλ

φφλλ

λφφφλφφφφφ

,)(

,,,,0

−=

−=−= AA
, 

which implies λλ = , i.e. Λ∈∀λ  are real. Thereby, the set 

of eigenfunctions Φ  is also real. Moreover, 

µλµλµλ φφµλφφφφ ,)(,,0 −=−= AA , 
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and thereby 0, =µλ φφ  for µλ ≠ . That is, the set of 

eigenfunctions Φ  is orthonormal if λλ φφ ,  is normalized 

to one for Λ∈∀λ . Secondly, the inverse of A  is a bounded 

and closed operator in )(2 ΩL , since A  is a second-order 

differential operator. Therefore, the set of eigenfunctions Φ  

is a complete basis of )(2 ΩL . 

Further to consider the bending stiffness A : 

)()/1( 22 φρφ ∇∇= kA  in Ω , 

0ˆ
11 =⋅∇+ nφβφα  and 

0ˆ)( 2

2

2

2 =⋅∇∇+∇ nkk φβφα  on Ω∂ , 

where the spatial functions ρ , k  are real and positive in Ω , 

and )0.0(),( 11 ≠βα , )0.0(),( 22 ≠βα  on Ω∂ . Then the 

bending stiffness is belonging to Sturm-Liouville class, 

)(Ω∈ SLA , under the inner-product of (1). The proof follows. 

Let two operators P  and Q  be defined by 1 2P −= ρ ∇  

and 2∇= kQ , then the bending stiffness A  becomes their 

composite, i.e. A PQ= . For any )(, AD∈φψ ,  

ΩΩ
= φψφψ PQPQ ,, , 

since 0ˆ)()( 11 =⋅∇+ nψβψα QQ  and 0ˆ
11 =⋅∇+ nφβφα . 

Moreover, 

ΩΩ
= φψφψ QPPQ ,, , 

Since 0ˆ)()( 22 =⋅∇+ nφβφα QQ ; 0ˆ
22 =⋅∇+ nψβψα . 

Observe that 

ΩΩ
= φψφψ PQQP ,, , 

since both sides equal ∫Ω ∇⋅∇ dVk φψ 22
. Therefore, the 

bending stiffness operator A  is self-adjoint. Moreover, the 

inverse of A  is a compact operator in )(2 ΩL , since A  is 

fourth-order differential operator. Therefore, its 

eigenfunctions constitute a real, orthonormal, and complete 

basis of )(2 ΩL  under the inner-product of (1). 

3. 2D Transfer Function- a New Tool 

With respect to the eigenfunctions set { } Λ∈λλφ  of a 

Sturm-Liouville operator A , the Galerkin transform G  

from spatial functions to modal functions, )]([)( xfF G=λ , is 

defined by 

∫Ω≡ dxxfxxF )()()()( λφρλ .            (2) 

Completeness and orthonormality of { }
Λ∈λλφ  of countable 

cardinality jointly imply that the Galerkin transform G  has a 

unique inverse -1G , 1f (x) G [F( )]−= λ : 

∑
Λ∈

≡
λ

λφλ )()()( xFxf .              (3) 

Then, Laplace-Galerkin transform H  from 

spatial-temporal functions to modal-complex functions is 

defined by the composite of Galerkin transform G  and 

Laplace transform L :  

GLLGH == ; 

explicitly, 

dxdttxfxxetxfsF st ),()()()],([),(
0∫ ∫
∞

Ω

−
−

=≡ λφρλ H .  (4) 

Accordingly, the inverse of Laplace-Galerkin transform 
1H−  is the composite of the inverse of Laplace transform and 

that of Galerkin transform, that is,  

11111 −−== GLLGH
--- ; 

explicitly, 

∑∫
Λ∈

Γ
=≡

λ
λφλ

π
λ dsexsF

j
sFtxf

ts-
)(),(

2

1
)],([),(

1
H .  (5) 

Here the domain Γ  is an infinite line parallel to the 

imaginary axis, whereon the integral in (4) is converged. 

Denote the temporal derivative t∂∂  by tD , and let A  be 

a Sturm-Liouville operator, )(Ω∈ SLA . Especially for 

boundary and initial homogeneity, there are two basic 

properties about Galerkin and Laplace transforms: 

)],([)],([ txftxf GAG λ=             (6) 

based on Green’s identity, and  

)],([)],([ txfstxft LDL = .          (7) 

Moreover, for any parabolic or hyperbolic dynamics Ĝ , its 

spatiotemporal impulse response of Ĝ  is defined by  

)],([),( 1 sGtxg λ−= H             (8) 

As an explanatory example of 2D transfer-function, let us 

find the impulse response of the following wave equation Ĝ : 

u
xt

=
∂
∂−

∂
∂

2

2

2

2 ψψ
, π≤≤ x0 , ∞<≤ t0 ; 

0),0( =tψ , 0),( =tπψ , ∞<≤ t0 . 

0)0,( =xψ , 0)0,( =xψɺ , π≤≤ x0 . 

The elastic stiffness 22 x∂∂−  is of eigenvalues 

{ }⋯,9,4,1=Λ  
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associated with eigenfunctions xx λπφλ sin/2)( = . 

Taking the Laplace-Galerkin transform H  on both sides of 

the differential equation yields 

),(),()( 2 sUss λλλ =Ψ+ , 

that is, the 2D transfer-function of the dynamics Ĝ  is  

λλ
λλ

+
=Ψ≡

2

1

),(

),(
),(

ssU

s
sG . 

Correspondingly, the impulse response Gg 1−= H  is 

∑∑
∞

=

∞

=

− =
+

⋅=
11

22

1
sinsin

2
)

1
(sin/2),(

ωω
ωω

πωω
ωπ tx

s
xtxg L . 

To check whether this solution is correct, let us give the 

dynamics Ĝ  the 2D unit-pulse ∑
∈

=
Λ

xttxu

λ
λφδ )()(),( , 

where 1=uH . Integration of the differential equation from 
−= 0t  to += 0t  yields the initial condition: 0)0,( =xψ  and 

∑
∈

=
Λ

xx

λ
λφψ )()0,(ɺ . Thereby, the impulse response g  is just 

the solution of the initial-value problem: 

0
2

2

2

2

=
∂
∂−

∂
∂

xt

ψψ
, 

0),0( =tψ , 0),( =tπψ , 

0)0,( =xψ , ∑
Λ∈

=
λ

λφψ )()0,( xxɺ , 

which has the form solvable by the conventional 

Separation-of-Variables method. It can be found that two 

solutions are identical. Therefore, representation of 

Sturm-Liouville dynamics by 2D transfer-functions captures 

the memory nature of dynamics, and therefore results in 

unconfused dynamic responses driven by spatial-temporally 

impulsive or discontinuous inputs. 

4. Virtual-Source Conversion of 

Boundary Inhomogeneity 

By a series of examples, this section demonstrates how to 

converts the boundary or initial inhomogeneity into virtual 

source in conjunction with boundary or initial homogeneity. 

For the first example, consider the acoustic dynamics Ĝ : 

0
2

2

2

2

=
∂
∂−

∂
∂

xt

ψψ
, 0),0( =tψ , 0),( =tπψ , 

with inhomogeneous boundary conditions: 

0)0,( =xψ , )()0,( xfx =ψɺ . 

With integration by parts, taking the Laplace-Galerkin 

transform H  on the differential equation yields  

)]([
1

),(
2

xf
s

s G
λ

λ
+

=Ψ . 

Taking the inverse Laplace-Galerkin transform 1−
H  on 

the above equation yields 

)()(
2

2

2

2

txf
xt

δψψ =
∂
∂−

∂
∂

, 0),0( =tψ , 0),( =tπψ , 

0)0,( =xψ , 0)0,( =xψɺ , 

where δ  is the Dirac delta distribution. That is, these two 

PDE models point to the same response for +≥ 0t . 

For the second example, consider the following 

thermoacoustic vibration Ĝ : 

0)(
1

2

2

=∇⋅∇−
∂
∂ ψ

ρ
ψ

k
t

 in Ω ,          (9)  

fn =⋅∇+ ˆψβαψ  on Ω∂ ,         (10) 

where 0)( >xρ , 0)( >xk  for Ω∈∀x , and )(xα , )(xβ  

are real Ω∂∈∀x  but not both zero. This dynamics involves 

the elastic stiffness A : 

)()/1( φρφ ∇⋅∇−= kA  in Ω , 

0ˆ =⋅∇+ nφβαφ  on Ω∂ . 

As shown in Section 2, the elastic stiffness A  is a 

Sturm-Liouville operator )(Ω∈ SLA  under the inner-product 

of (1). Let { } Λ∈=Φ λλφ  denote the eigenfunctions set of A  

corresponding to the eigenvalues set Λ .  

On the boundary Ω∂ , firstly, substitution 

0ˆ =⋅∇+ nλλ φβαφ  for (10) )( λφ−×  yields 

fn )/(ˆ)( βφψφφψ λλλ −=⋅∇−∇  for 0≠β . 

Secondly, substitution of  

0ˆ =⋅∇+ nλλ φβαφ  

for (10) n̂⋅∇× λφ  yields 

fnn )/ˆ(ˆ)( αφψφφψ λλλ ⋅∇=⋅∇−∇  for 0≠α . 

In general, the sum of the first equation )/( βαβ +×  and the 

second equation )/( βαα +×  becomes  

f
n

n
βα
φφψφφψ λλ

λλ +
⋅∇+−=⋅∇−∇ )ˆ(

ˆ)( . 
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Moreover, based on the Green’s identity, 

∫∫

∫

Ω∂Ω

Ω

⋅∇−∇+∇⋅∇=

∇⋅∇

dSnkdVk

dVk

ˆ)()(

)(

ψφφψφψ
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λ
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With these formulas, performing Laplace-Galerkin 

transform on (9) yields 
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where )],([),( txs ψλ H≡Ψ , )],([),(ˆ txfsxf L≡ , and λB  

equals 
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Therefore, the 2D transfer-function G  of the dynamics Ĝ  

in (9)-(10) is 

λλ
λλ

+
=Ψ≡

2

1

),(

),(
),(

ssQ

s
sG , 

Performing the inverse Laplace-Galerkin transform 1−
H  on 

the above equation yields  

qk
t

=∇⋅∇−
∂
∂

)(
1

2

2

ψ
ρ

ψ
 in Ω ,      (11) 

fn =⋅∇+ ˆψβαψ  on Ω∂ ,      (12) 

where )],([),( 1 sQtxq λ−≡ H . 

That is, in the interior of the domain Ω , the response 

governed by (9)-(10) is identical to that governed by (11)-(12), 

since both have the same 2D transfer-function.  

For the third example, consider the following beam 

vibration Ĝ : 

0)(
1

2

2

2

2

2

2

=
∂
∂

∂
∂+

∂
∂

x
k

xt

ψ
ρ

ψ
 in ],0[ ℓ ,      (13) 

111 )()( fkk =′′′+′′ ψβψα , 222 f=′+ ψβψα  at 0=x , (14)  

0=ψ  and 0=′′ψ  at ℓ=x ,          (15) 

where 0)( >xρ , 0)( >xk  for all ],0[ ℓ∈x , 01 ≠β , and 

02 ≠β . This dynamics involves the bending stiffness A  in 

Section 2: 

)(
1

2

2

2

2

x
k

x ∂
∂

∂
∂= φ

ρ
φA  in ],0[ ℓ , 

011 =′+ φβφα  and 0)()( 22 =′′′+′′ φβφα kk  at 0=x , 

0=φ  and 0=′′φ  at ℓ=x ,        (16) 

which is a Sturm-Liouville operator, ]),0([ ℓSL∈A , under 

the inner-product of (1). Let us denote its eigenvalues set by 

Λ  and eigenfunctions set by { } Λ∈=Φ λλφ . 

With integration by parts (one-dimensional Green’s 

identity), 

( ) 0

00

)()()()(

)()(

=′′′−′′′+′′′−′′′+

′′′′=′′′′ ∫∫
xkkkk

dxkdxk

λλλλ

λλ

φψφψψφψφ

φψψφ
ℓℓ

. 

By substituting (16) into (14), this equation becomes 

2

2

1

1
00

)0()0()0(
)()( f

k
fdxkdxk

β
φ

β
φφψψφ λλ

λλ
′′

−−′′′′=′′′′ ∫∫
ℓℓ

. 

Thus, performing the Laplace-Galerkin transform H  on 

(13) yields 

)(
)0()0(

)(
)0(

),()( 2

2

1

1

2
sF

k
sFss

β
φ

β
φλλ λλ ′′

+=Ψ+ . 

Performing the inverse Laplace-Galerkin transform 1−
H  

on the above equation yields  

∑
Λ∈

′′+=

∂
∂

∂
∂+

∂
∂

λ
λλ φφ

β
δ

ρβ

ψ
ρ

ψ

)()0()(
)0(

)()(
)0(

1

)(
1

2

2

1

1

2

2

2

2

2

2

xtf
k

xtf

x
k

xt
,   (17) 

0)()( 11 =′′′+′′ ψβψα kk  and 022 =′+ ψβψα  at 0=x , 

0=ψ  and 0=′′ψ  at ℓ=x , 

where the last term of the right-hand side in (17) includes the 

second derivative of the Delta function )(xδ ′′ . This response 

is identical to that of (13)-(15) in ],0( ℓ , since they have the 

identical transfer-function.   

The above examples show how the parabolic or hyperbolic 

dynamics with inhomogeneous boundary/initial condition can 

be converted to impulsive source on boundary in conjunction 

with boundary/initial homogeneity. 

5. Numerical Visualization 

In this section, conventional and virtual-source solutions of 

a simple heat-condition with one-side Dirichlet 

inhomogeneity is computed and then visualized in figures. It is 

expected to visualize between them the identical parts in the 

interior but the topological difference on the inhomogeneous 
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boundary. Accordingly, consider the solution of the following 

parabolic dynamics: 

0
2

2

=
∂
∂−

∂
∂

x

y

t

y
, for ],0[ π∈x , ),0[ ∞∈t ; 

)(),0( tfty = ; 0),( =ty π ; for ),0[ ∞∈t ; 

0)0,( =xy  for ],0[ π∈x . 

Two cases of environments are considered: one is 

time-invariant in which 1)( =tf , and the other is 

time-varying in which ttf ωsin)( = . 

The conventional approach is firstly applied to solve the 

Case I. Thereby, let the temperature distribution y  be 

decomposed into  

),()(),( txxytxy ψ+= , 

Where the steady-state solution y  is governed by  

0
2

2

=
dx

yd
, 1)0( =y , 0)( =πy ; 

and the transient solution ψ  is governed by  

0
2

2

=
∂
∂−

∂
∂

xt

ψψ
, 0),0( =tψ , 0),( =tπψ , )()0,( xyx −=ψ . 

Therein the transient equation is of boundary homogeneity, 

so it can be solved by the method of separation-of-variables. 

In this method,  

∑
∞

=
=

1

)()(),(
n

nn xttx φηψ , 

where nxxn sin/2)( πφ = , and 

02 =+ nn n ηηɺ , 

[ ]1)1()1(
12

,)0( 1 −−+−=−= + nn

nn
n

y
π

φη . 

That is,  

tn
N

n

n enx
n

b
xtxy

2

1

sin
2

1
1

),(
−

=
⋅++−= ∑ππ

, 

1)1()1( 1 −−+−≡ + nn

nb .          (18) 

In fact, the transient solution ψ  can also be solved by the 

virtual-source realization of initial inhomogeneity as shown in 

the first example of Section 4. Therein, with the approach the 

2D transfer-function, the transient equation is realized by 

virtual source as 

)()(
2

2

txy
xt

δψψ −=
∂
∂−

∂
∂

, 

0),0( =tψ , 0),( =tπψ , 0)0,( =xψ , 

which is boundary and initial homogeneity. Taking the 

Laplace-Galerkin transform on this equations yields 

π
λ 21

),(
2 n

b

ns
s n

+
=Ψ ( λ=n ). 

Taking the inverse Laplace-Galerkin transform on Ψ  

yields the identical solution:  

tn
N

n

n enx
n

b
tx

2

1

sin
2

),(
−

=
⋅= ∑π

ψ . 

Secondly, the virtual-source realization, as shown in 

Section 4, is employed to solve the Case I and Case II. Based 

on the Green’s identity, 

nnn yyy φ
π

φφ ′′+′−=′′ ,
0

, .        (19) 

Taking the Laplace-Galerkin transform on the 

heat-conduction dynamics above yields  

2

)(
)0(),(
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sF
snY n +

⋅′= φ .           (20) 

As 1)( =tf , ssF /1)( = . Then taking the inverse 

Laplace-Galerkin transform on Y  yields 
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In case II, let )(tf  be tωsin  and then 

)/()( 22 ωω += ssF . By the similar procedure, 
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),(
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  (22) 

However, the separation-of-variables method is improper to 

be employed to solve the solution of Case II, wherein the 

environmental temperature is time-varying. 

Figure 1 shows the order-reduced solutions of Case I with 

300 modes being considered, wherein at 8.0=t  the 

separation-of-variable solution of (18) is in juxtaposition with 

the virtual-source solution of (21) for comparison. It is bound 

that both solutions are identical in the interior of the domain, 

as predicted. However, close view on the inhomogeneous 

boundary 0=x  as shown in Figure 2 reveals that the exact 

solution ( ∞→N ) by the virtual-source realization is 

discontinuous at 0=x . In fact, this has been suggested by (20) 

above. With the inverse Laplace-Galerkin transform, (20) is 

equivalent to  
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,           (23) 

with boundary and initial homogeneity. Equation (23) implies 

that the virtual source is actually impulsive on the 

inhomogeneous boundary, which converts the 

boundary/initial conditions into delta sources and/or their 

derivatives.  
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Figure 1. Topological comparison of the virtual-source solution with the 

separation-of-variables solution under time-invariant environment 

Figures 3 and 4 shows the virtual-source solution under 

time-varying environment: ttf sin)( = . At 8.0=t , two 

order-reduced solutions according to 200=N  and 

1000=N , respectively, are juxtaposed with each other. The 

situation of converging implies that the solution will reach 

discontinuity at 0=x  as ∞→N . This verifies again that 

the virtual-source strategy is zeroing the environment and 

simultaneously giving impulsive source on the 

inhomogeneous boundary. 
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Figure 2. Close view of Figure 1 
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Figure 3. Topological convergence of the virtual-source solution under 

time-varying environment 
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Figure 4. Close view of Figure 3 

6. Summary 

This paper provides the virtual-source realization to 

cleverly solve parabolic and hyperbolic dynamics with 

inhomogeneous boundary conditions. It is especially for 

modal decomposition under time-varying environments and 

Robin inhomogeneity, which is beyond conventional 

approaches. It is found that the virtual source is actually 

impulsive on the inhomogeneous boundary, which converts 

the boundary conditions into delta sources and/or their 

derivatives. Its strategy is to zero the environment and 

simultaneously to create an impulsive source on the 

inhomogeneous boundary. These findings are obtained 

through the Hilbert space in which the 2D transfer function 

and Laplace-Galerkin transform are constructed as the main 

tools for this work. 
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