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Abstract: A variational method for calculation of the eigenfunctions and eigenvalues in the Sturm-Liouville problem with 

the Neumann boundary values is offered. The method is based on a functional, which is introduced in this work. An 

appropriate numerical algorithm is developed. Calculations for the three potentials are produced: sin((x-π)
2
/π), cos(4x) and 

the high not isosceles triangle. The method is applied to the Sturm-Liouville problem with the Dirichlet boundary values. 

Some suppositions about the inverse Sturm-Liouville problem are made. 
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1. Introduction 

The aim of this work is calculation of the eigenfunctions 

(EFs) y1,...,yn  and eigenvalues (EVs) λ1,...,λn in the 

Sturm-Liouville (SL) problem in the form of: 

              (1) 

with the Neumann boundary values: 

              (2) 

Several methods of calculation of the EFs and EVs in the 

Sturm-Liouville problem exist. The bibliography on this 

question you can find in [1,2]. In this work a variational 

method based on a functional is offered: 

 

 

where γ and β are chosen sufficiently small. 

 

2. The Main Point of the Variational 

Method for the Neumann Boundary 

Values 

An algorithm is based on the well-known properties of the 

EFs and EVs: 

1. orthogonality of the EFs: 

            (3) 

2. monotony and positivity of the EVs: 

     (4) 

3. normality condition for EFs: 

             (5) 

Let's break the segment [0,π] into k pieces. h=π / (k−1), 

y
1
=0 in view of the boundary values. 

Let's suppose that the first n−1 EFs and EVs are known. 

Let's base the algorithm construction on the following 

statement: 
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Theorem. Let the functional be defined: 

   (6) 

 

where γ and β are sufficiently small. 

If  subject to λ>λn-1 

and , then the function  and 

the value , bringing this minimum, are the EF and the 

corresponding EV for the SL problem (1)−(2). At that, these 

EF and EV are different from the previous ones. 

Proof. Let the functional (6) reach a zero minimum by 

 and . I.e., 

     (7) 

Let's direct k to ∞. The sums over k in (7) by that 

transform into the integrals by the trapezium rule with a 

negligibly small remainder. The expression  

transforms into the difference statement of the first 

derivative, and then  transforms into the 

difference statement of the second derivative. We derive: 

 

 

The expression under the modulus is the normality 

condition for EFs, and the integrals under the sum are the 

scalar product of the EFs (3). Thereby, we derive: 

 and ,
 

or 

 and . 

I.e.,  meets the SL problem (1)−(2), and  is a EF, 

and  is a corresponding EV. 

Which required to be proved. 

The distinction between the derived EF, EV and the 

previous ones follows from monotony of the EVs (4) and the 

condition . 

Thereby, at the first step of our algorithm the following 

functional 

 

is being minimized in y and λ under the condition λ>0. As a 

result we derive a EF y1 and a corresponding EV λ1. 

In order to derive the second pair of the EF and EV we'll 

minimize the functional 

 

in y and λ under the condition: λ>λ1, etc. 

The global minimum search was carried out by the 

Random search method (the procedure Nminimize of the 

famous software Wolfram Mathematica). 

It will be observed, that not always one can at once find 

the zero minimum with a sufficient accuracy. In this case one 

has to move enough far away from the previous EV and then 

make sequentially a few steps until a given accuracy is 

achieved. At that, the step must be sufficiently small. 

If the step isn't small enough, you can miss the proper 

minimum. The step was being selected experimentally. The 

distance from the previous EV was being selected 

experimentally too. 

The described calculations were carried out for the 

potential q(x)=cos(4x) (Fig. 2) and asymmetrical functions 

sin((x-π)
2
/π) (Fig. 1) and a not isosceles triangle, whose 

altitude is much longer then the base. 

The results are tabulated in the end of the article. 

In Fig. 3, 4, 5 you can see the first, second and the 

twentieth EFs for the not isosceles triangle. 

In Fig. 6, 7, 8 you can see the first, second and the 

twentieth EFs for sin((x-π)
2
/π). 

In Fig. 9, 10, 11 you can see the first, second and the 

twentieth EFs for cos(4х). 

The interval [0,π] was partitioned in 100 pieces (n=100). 

By such conditions the minimum of the functional is of the 

order of 10
-5

. Unfortunately, author's computational 

capability allows only first 20 EV and EF. 

The following EVs one can easily calculate with the help 

of an asymptotic formula [2] (Theorem 4.14): 
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3. Briefly about the Variational Method 

for the Dirichlet boundary values

The variational method is useful for the Sturm

problem with the Dirichlet boundary values. In this case the 

base functional looks: 

The algorithm is constructed similarly. On the first step 

of our algorithm the following functional

is being minimized in y and λ under the condition 

The     successive EF and EV are being 

consequentially from the previous ones.

4. Briefly about the Variational Method 

for the Inverse Sturm-Liuville 

Problem 

So, the variational method provides the ability to solve 

the direct Sturm-Liuville problem for the various boundary 

values. 

Let's mention briefly the inversed Sturm

problem: to restore the potential q(x) by the known EFs and 

Evs. According to Theorem P from

determine a potential identically you must have two sets of 

Evs for the tasks with the different boundary values. For 

example, one task with the Dirichlet boundary values and 

another one with the Neumann boundary values.

Possibly, the variational method can help to solve the 

inversed  Sturm-Liuville problem. 

The problem is incorrect and can be solved b

regularization method, which was developed by Tikhonov 

A. N. [4]. 

5. Conclusions 

It is significant, that in particular the asymmetrical 

potentials are of interest. Symmetrical potentials were 

considered earlier by different methods.

So, we have obtained not only theoretical computations, 

but the results of calculations for the concrete functions too.

This work demonstrates a use of a present

obtain series of EFs and Evs. 

The variational method can be useful in some problems of 

mathematical physics, based on the Sturm

Maybe, not only for direct, but for inversed problems too.
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6. Results 

 cos(4x) 

λ1 0.547 

λ 2 2.102 

λ 3 6.531 

λ 4 11.391 

λ 5 18.195 

λ6 26.95 

λ7 38.146 

λ8 51.714 

λ9 66.937 

λ10 84.155 

λ11 103.677 

λ12 125.503 

λ13 148.728 

λ14 174.439 

λ15 201.706 

λ16 230.988 

λ17 261.731 

λ18 294.457 

λ19 328.689 

λ20 364.896 

Figure 1. sin((x−π)

Figure 2. 

Figure 3. The first EF for the not isosceles triangle.
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sin((x−π)2/ π) triangle 

0.855 1.534 

3.139 10.936 

7.122 15.43 

13.163 19.947 

21.235 28.034 

31.282 38.101 

43.325 49.993 

57.349 63.714 

73.336 79.802 

91.268 97.824 

111.126 117.71 

132.896 138.932 

148.728 162.786 

182.068 188.007 

209.42 215.223 

238.578 244.455 

269.515 275.167 

302.199 307.895 

336.597 342.129 

372.673 377.849 

 

sin((x−π)2/ π). 

 

Figure 2. cos(4x). 
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Figure 4. The second EF for the not isosceles triangle.

Figure 5. The twentieth EF for the not isosceles triangle.

Figure 6. The first EF for sin((x-

Figure 7. The second EF for sin((x
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The second EF for the not isosceles triangle. 

 

he twentieth EF for the not isosceles triangle. 

 

π)2/π). 

 

sin((x-π)2/π). 

Figure 8. The twentieth EF for 

Figure 9. The first EF for cos(4x).

Figure 10. The second EF for cos(4x).

Figure 11.  The twentieth EF for cos(4x).
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