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Abstract: Turbulent energy has developed revolutionary technology in the form of a portfolio of devices for the mixing, 

separation and the homogenization of liquids with liquids, liquids with gasses and gasses with gasses. The mixing technology 

may be applied to a wide variety including chemicals, pharmaceuticals, cosmetics, foods, agricultural, water treatment with 

purification and hybrid fuels. The paper reports the transformation of energy equation for turbulent flow in terms of 

correlation tensors of second order, where the correlation tensors are the functions of space coordinates, distance between two 

points and time. To reveal the relation of turbulent energy between two points, one point has been taken as the origin of the 

coordinate system. Correlation between pressure fluctuations and velocity fluctuations at the two points of flow field is 

applied to the turbulent energy equation. The applications of turbulent energy are discussed for the source of oceanic 

turbulence by means of Richardson number. A multiplication factor in terms of kinetic energy and potential energy is 

considered for finding the correlation between the multiplication factor and critical flux Richardson number and to signify the 

relative efficiency of mixing by Kelvin-Helmholtz billows and the critical flux Richardson number. 
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1. Introduction 

Turbulent flow is of central importance to many 

engineering applications such as the production of the 

composite materials, internal combustion engines, textile 

industry, aerospace industry, environmental engineering, 

chemical engineering, process engineering, paper making, 

and so on. The turbulence is maintained by the turbulent 

energy production, where the dissipation and the buoyancy 

flux act as sinks for the turbulent energy. Accurate 

estimation of the turbulence dissipation rate is important for 

the turbulent flows in the industry. The energy dissipation 

was measured by adjacent to an island by Osborn [1], 

where the turbulence was supported by the Reynolds stress 

working against the local mean shear. This mean shear 

would be time variable, largely due to internal waves and 

hence would grow and decay with time. Osborn [2] also 

estimated energetic of the current and balanced the 

turbulent energy equation to justify using   as an 

estimation of the local production. Oakey [3] examined the 

rate of dissipation of turbulent energy from simultaneous 

temperature and velocity shear microstructure 

measurements. The dissipation rate was calculated from 

high-wavenumber cut-off of the temperature microstructure 

spectra and from velocity shear. The kinetic energy 

dissipation was also examined from batchelor curve fitting 

by Luketina and Imberger [4]. The kinetic energy 

dissipation rate for turbulent flow was compared between 

two ocean microstructure profilers by Moum et al. [5]. 

Large differences in dissipation rate were found between 

those two profilers, which appear to be greater in the 

meridional direction than the zonal direction.  

The dynamics of the evolution of turbulence statistics 

depend on the structure of the turbulence. A systematic 

framework was introduced by Kassinos et al. [6] for 

exploring the role of turbulence structure in the evolution 

of one-point turbulence statistics. The one-point structure 

tensors were found to be useful descriptors of turbulence 

structure, and lead to a deeper understanding of some rather 

surprising observations from direct numerical solutions and 

experiments. Two new formulations such as an inviscid 

estimate for the viscous dissipation rate of turbulent kinetic 

energy and a mixing length estimate for the turbulent heat 

flus were examined from the measurements of 
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energy-containing scales of turbulence in the ocean 

thermocline [7]. It was found that energy-containing scale 

estimates of both dissipation rate and heat flux compare 

favorably with dissipation scale estimates.  

For dissipation rate estimation, a large eddy particle 

image velocimetry (PIV) method was proposed by Sheng 

[8] as PIV is capable of providing multi-point instantaneous 

measurements of a flow field. Nash and Moum [9] 

estimated the microstructure of turbulent salinity flux and 

the dissipation spectrum of salinity. Bhattacharya et al. [10] 

formulated a locally homogeneous representation for the 

two-point, second-order turbulent velocity fluctuation in 

terms of three linearly independent structure tensors. To 

evaluate the representation, a model correlation was 

constructed by fitting the representation to correlations 

calculated from direct numerical simulation (DNS) of 

homogeneous turbulence and channel flow. Carbone et al. 

[11] discussed the turbulent energy cascade in anisotropic 

magneto hydrodynamic turbulence.  The occurrence of an 

energy cascade for turbulence in solar wind plasmas was 

historically addressed by using phenomenological 

arguments based to the sweeping of fluctuations by the 

large-scale magnetic field and the anisotropy of the cascade 

in wave vectors space.  

There are some on-going researches on turbulent motion. 

An equation for turbulent motion was derived in terms of 

second order correlation tensors [12]. After injecting fibers 

in the same phenomena, an equation was developed in 

terms of second order correlation tensors by Ahmed and 

Sarker [13]. Two equations were also developed in 

presence of dust particles [14] and in a rotating system [15]. 

Derivation of turbulent energy was discussed with 

two-point correlation [16], and in presence of dust particles 

[17], in a rotating system [18] and in a rotating system with 

dust particles [19]. All the correlation tensors used in the 

developed equations were defined as the functions of space 

coordinates, distance between two points and time. In these 

view, it is important to develop a mathematical model for 

further analysis on turbulent energy. However, there are 

few studies relevant to the turbulent energy although it is 

prevalent in the industry. In view of all the work, the main 

aim of the present study is to develop an energy equation 

for turbulent flow in terms of second order correlation 

tensors and to thrash out the application of turbulent energy 

for the source of oceanic turbulence using Richardson 

number. 

2. Mathematical Formulation 

The equations of motion and continuity for turbulent flow 

of a viscous incompressible fluid are  
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The energy equation for turbulent flow of a viscous 

incompressible fluid is given by  
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Where iu  are the fluid velocity components; p is the 

unknown pressure field; υ  is the kinematical viscosity of 

the fluid; ρ  is the density of the fluid particle; ijlε  the 

three-dimensional permutation symbol, where ε  is the 

dissipation by turbulence per unit of mass; jΩ , the rotation 

vector and t is the time. 

We assume that the mean velocity iU  is constant 

throughout the region considered and independent of time, 

and we put 

( ) ,uUU
Aiii += ( )

Bjjj uUU += . 

The value of each term can be obtained by using the 

equations of motion for ju  at the point B  and for iu  at 

the point A . The energy equation for iu  at the point A is 

obtained from equation (3), 
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Multiplying equation (5) by ( )
Bju , we obtain 
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Where ( )
Bju  can be treated as a constant in a differential 

process at the point A .  

Similarly, the energy equation for ju  at the point B  is 

obtained as 
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Where ( )
Aiu  can be treated as a constant in a differential 

process at the point B . 

Addition of equations (6) and (9) gives the result 
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To expose the relation of turbulent energy at the point B  

to those at point A , it will give no difference if we take one 

point as the origin of A  or B  of the coordinate system. 

Let us consider the point A  as the origin. In order to 

differentiate between the effects of distance and location, we 

introduce as new independent variables [19], 
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Using the above relations in equation (10) and taking 

ensemble average on both sides, equation (10) becomes 
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Equation (11) represents the mean motion for turbulent 

energy with pressure-velocity correlation. 

It is noted that the coefficient of kU  has been vanished. 

The equation (11) describes the turbulent energy motion, 

where the motions with respect to a coordinate system 

moving with the mean velocity kU . 

Equation (11) contains the double velocity 

correlation ( ) ( )
BjAi uu , double correlations such as ( )

BjA up , 

triple correlations such as ( ) ( ) ( )
BjAkAi uuu  where all the 

terms apart from one another. The correlations ( )
BjA up  and 

( )
AiB up form the tensors of first order, because pressure is a 

scalar quantity and the triple correlations ( ) ( ) ( )
BjAkAi uuu  

and ( ) ( ) ( )
BjBkAi uuu  form the tensors of third order. The 

double and triple correlations at the two points A  and B  

in the flow field have been shown in Fig.1 and Fig.2 

respectively, where r is the distance between two points 

A and B . 
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Fig. 1(a). Double correlation between pressure at A and velocity 

components at B . 
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Fig. 1(b). Double velocity correlation between the velocities au at A and 

bu  at B . 
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Fig. 2. Triple velocity correlation among the velocities at the points A  

and B . 

We designate the first order correlations by ( )
B,Aj,pk , 

second order correlations by ( )
B,Aj,iQ  and third order 

correlations by ( )
B,Aj,iks . 

Therefore, we set 
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Where, the index p indicates the pressure and is not a 

dummy index like i  or j  so that the summation 

convention does not apply to p . 

Also the term ( ) ( )
BjAlkikl uuΩε  and ( ) ( )

AiBlkjkl uuΩε  

form the correlation tensors of second order, we designate 

these by jiD ,  and jiH ,  respectively. 

Thus we set 
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If we use the above relations of first, second and third 

order correlations in equation (11) then we obtain 
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Where all the correlations refer to the two points A  

and B .  

Now for an isotropic turbulence of an incompressible flow, 

the double pressure-velocity correlations are zero, that is, 

( ) ,k
B,Aj,p 0= ( ) 0=

B,Ap,ik . 

In case of isotropy, the statistical features have no 

directional preference and perfect disorder persists. The 

velocity fluctuations are independent of the axis of reference, 

i.e. invariant to axis rotation and reflection. From the 

definition of isotropy, ( ) ( ) ( ) 0==
BjAiB,Aj,i uuQ  for all 

ji ≠ . In the rotating system in the flow field through 180
0 

about 1x -axis must, because of isotropy, give  
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which can be true only when ( ) ( ) 021 =
BA

uu . 

The isotropic turbulence in a bounded domain is a model 

where in the turbulence is unaffected by the boundaries 

enclosing the fluid, and furthermore the statistical moments 

are spatially invariant and independent of orientation. 

Isotropic grid turbulence is a similar idealization, in that the 

turbulence is enclosed by wind tunnel walls and the 

homogeneity of the turbulence in the central region is known 

to be unaffected by the wall boundary layers. 

In an isotropic turbulence it follows from the condition of 

invariance under reflection with respect to point A , 

( ) ( ) ( ) ( ) ( ) ( )
BiAjAkBjBkAi uuuuuu −=  

or, 

( ) ( )
B,Ai,kjB,Akj,i ss −= . 

In absence of isotropic turbulence, physical properties 

will be different in different directions according to the 

direction of measurement. Anisotropic turbulence tends 

toward local isotropy, in that the statistics of velocity 

differences tend toward invariance under rotation as the 

distance between the velocities becomes smaller. For 

non-isotropic (anisotropic) turbulence, constant or 

non-constant average velocity of pressure field will not be 

zero. Anisotropy is the property of being directionally 

dependent. It can be defined as a difference, when measured 

along different axes, in a material's physical or mechanical 

properties (absorbance, refractive index, conductivity, 

tensile strength, etc.). 

Thus equation (12) can be written as  
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This is the energy equation for turbulent flow in terms of 

correlation tensors of second order. 

If there are no effects of the dissipation ε  by the 

turbulence per unit mass, 0, =jiL so that the equation (14) 

takes the form 
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This equation represents the turbulent motion in terms of 

correlation tensors of second order, which is the same as 

obtained by Hinze [12]. 

3. Application 

The turbulent energy may be applied to the shear zone 

between the South Equatorial current and the Atlantic 

Equatorial undercurrent. The energy may be significant to 

some of the thick patches of turbulence found in other parts 

of the ocean. In steady case, the value of flux Richardson 

number fR must be less than 1 for maintained turbulence in 

a shear flow. The shear flow is circulated by pressure 

velocity correlations. The latitude of a maximum value for 

fR above which the turbulence cannot be maintained in 

steady state is very appealing. Such a value constitutes a 

critical flux Richardson number. At higher values of the flux 

Richardson number too much energy is going into buoyancy 

flux and turbulence will be suppressed. Britter’s 

measurements suggest the critical value for fR is 0.18-0.2. 

Ellison’s theoretical prediction is that the critical value for 

flux Richardson number, 15.0~critR f . Since, the 

turbulence will be suppressed and too much the energy goes 

into the buoyancy flux at the higher values of fR , we can 

apply the steady state value for critical flux Richardson 

number to a leisurely varying mean state. 

If we define the eddy coefficient for density ρK  by 
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Where N is the vaisala frequency, ε is the dissipation. 
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Equation (17) is applicable to thick patches of turbulence 

found in a variety of sections of the ocean. It also may be 

used in a steady shear zone to relate dissipation 

measurements to the buoyancy flux such as the Atlantic 

Equatorial Undercurrent. The functional dependence on ε  

and 2N  is determined by dimensional interpretation as 

soon as they are made the only available descriptors of the 

flux. To get hold of a better outcome of Kelvin-Helmholtz 

instabilities we consider thin features of scale 1 m. There are 

two sources of information on the mixing efficiency of 

Kelvin-Helmholtz billows. On the dimensions of 

Kelvin-Helmholtz billows, Thorpe comments that 10% of 

the energy removed from the mean field can go into mixing 

up and the energy up to 16% might be radiated away via 

internal waves. Koop defines the Richardson number by  

( )
( )2

0

u∆

h/∆g
Ri

ρρ=                (18) 

Where g is the gravitational force and 0h is the initial 

scale of the velocity shear. The Eq. (18) represents the ratio 

of the increase in potential energy to the decrease in kinetic 

energy as a function of gradient Richardson number. 

The most efficient mixing occurred at small gradient 

Richardson numbers with the value of KE /PE ∆∆ =0.25, 

where PE∆ is the potential energy and KE∆  is the kinetic 

energy. Using such kind of data we get the range of values 

for the multiplication factor denoted by γ  and defined 

as ( )
( )KE /PE1 

KE /PE

∆∆

∆∆

−
=γ , which converts the dimensionally 

correct ratio 
2N

ε
into an eddy coefficient for mass transport. 

Thus the factor ( )f

f

R

R

−1
 derived from the concept of a 

critical flux Richardson number. The assumed mean method 

may be applied for finding the correlation between the 

critical flux Richardson number and the multiplication factor 

using different types of value of the multiplication factor γ 

are given in Table 1. The correlation may be defined as  
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Where 
fRd and γd refers to deviations of fR  and γ 

respectively from an assumed mean; n , the total number of 

observations. 
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Table 1. Different types of value of the multiplication factor 

fR  γγγγ  

0.1267-fR  

fRd  

0.1555-γγγγ  

γd  

2

f
Rd  2

γγγγd  γγγγd
f

Rd  

0.25 0.333 0.1233 0.1775 0.0152 0.0315 0.0219 

0.20 0.250 0.0733 0.0945 0.0054 0.0089 0.0069 
0.15 0.176 0.0233 0.0205 0.0005 0.0004 0.0005 

0.10 0.111 -0.0267 -0.0445 0.0007 0.0020 0.0012 

0.05 0.053 -0.0767 -0.1025 0.0059 0.0105 0.0079 
0.01 0.010 -0.1167 -0.1455 0.0136 0.0212 0.0170 

fR∑ =0.76 γ∑ =0.933 f
Rd∑ =0.0002 

γd∑ =0 
2

f
Rd∑ =0.0413 

2
γd∑ =0.0745 γd

f
Rd∑ =0.0554 

 
Simplification of equation (19) gives 998750.r

fR =γ  which 

implies that the correlation is positive higher degree 

correlation between the critical flux Richardson number and 

the multiplication factor. It indicates that as the critical flux 

Richardson number fR increases, the factor γ also increases 

which is also exposed in Fig.3. The gradient Richardson 

number increases and we would have to think of this as the 

local value increasing everywhere, the factor γ  becomes 

smaller is shown in Fig.4. 

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

Critical flux Richardson number

M
u
lt

ip
li

ca
ti

o
n
 f

ac
to

r

 

Fig. 3. Correlation between critical flux Richardson number and 

multiplication factor 

 

Fig. 4. Relative efficiency of mixing by Kelvin-Helmholtz billows and the 

critical flux Richardson number 

Thus to estimate an upper bound for diffusion from 

measurements of the local dissipation rate for the two 

sources of turbulence, the equation (18) is a realistic way. 

4. Conclusions 

Energy equation in terms of second order correlation 

tensor for turbulent flow has been developed by averaging 

procedure, which consists of the correlations between the 

pressure fluctuations and velocity fluctuations at the two 

points A and B of the flow field. The equation (14) stands for 

the energy equation of turbulent motion in terms of 

correlation tensors of second order. In the equation, all the 

terms , , ,, ,i j i j i jQ S L are the second order correlation 

tensors where, 
j,iQ and

jiS ,
represents the velocity 

correlations at the two points A and B of the flow field; 

,i jL is the velocity correlation for turbulent energy. Equation 

(15) confers the turbulent motion in terms of correlation 

tensors of second order which was same as obtained by 

Hinze. The values of flux Richardson number has been used 

by maintained turbulence in a shear flow which is 

distributed by pressure velocity correlations. The equation 

(17) is germane to substantial patches of turbulence which is 

initiated in different expanses of the ocean. The eddy 

coefficient calculated by the equation (17) parameterizes the 

diffusion due to the small scale turbulence. 

The model for ρK is used to calculate approximately the 

buoyancy flux associated with the local small scale turbulent 

fluctuations that are responsible for the dissipation. So, the 

buoyancy flux and therefore the derived eddy coefficient are 

associated with the small scale turbulence. The flux 

Richardson number has been considered the values less than 

0.15 used in the derivation of equation (17). Dissipation that 

occurs in well-mixed portions of the water column is not 

allied with its proportionate share of mass transport. The 

positive correlation between the critical flux Richardson 

number and the multiplication factor is obtained from 

equation (19) which indicates that as the critical flux 

Richardson number fR increases, the factor γ also increases is 

shown in Fig.3. The gradient Richardson number is as a 

function of the ratio of the increase in potential energy to the 

decrease in kinetic energy which has been derived in equation 

(18) and the Fig.4 states that the factor γ becomes smaller as 

the gradient Richardson number increasing everywhere. 
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