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Abstract: If experimental tables are numerically integrated using quadrature formulas, then the measurement errors of the 

physical instrument is not taken into account. The result of such numerical integration will be inaccurate because of the 

accumulation of errors due to the summation of random values, and the residual term of the quadrature formula cannot be 

calculated using solely classical concepts. The traditional approach consists of applying various smoothing algorithms. In this 

case, methods are used that are unrelated to the problem of integrating itself, which leads to excessive smoothing of the result. 

The authors propose a method for numerical integration of inaccurate numerical functions that minimizes the residual term of 

the quadrature formula for the set of unknown values based on the error confidence intervals by using ill-posed problem 

algorithms. The high level of effectiveness of this new method, for which it is sufficient to know the error level of the signal, 

is demonstrated through examples. 
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1. Introduction 

The data from an experiment make up a set of imprecise 

values },..,,{ 21 NN yyy=Ω  the points of the 

}.,..,,{ 21 NN xxx=Ψ Set NΩ  may be interpreted as a 

discrete function of the values NΨ . Since the errors in 

devices are known, there is interest in solving three 

problems: 

(a) Recovering discrete data or a smooth functional 

dependence. 

(b) Numerical differentiation. 

(c) Numerical integrating and evaluation of an indefinite 

integral.  

Problems a) and b) are sufficiently covered by A. 

Tikhonov and his coauthors [1,2] within the theory of 

ill-posed problems, which cannot be said about problem c).  

It was noted that the problem of integrating may be 

well-posed established with appropriate selection of spaces 

[1]. In this case, the integrated function must be a continuous 

function. However, the result of numerical integration of a 

noisy table tells us about the unpredictability, since it is 

impossible to calculate the error. T.Prvan [3] was the first to 

pose the question of whether integration is a well-posed 

problem, and examined the problem of integrating 

numerical functions by constructing splines while taking 

errors into account. 

In classical analysis, integration is a well-posed problem. 

In the theory of functions, Lebesgue integration may be 

logically interpreted as being the inverse to the 

differentiation operator. The set of absolutely continuous 

functions in a given interval coincides with the set of 

functions represented in the form of an indefinite Lebesgue 

integral with a variable upper bound of some integrable 

function plus a constant. However, the indicated property of 

being the inverse to differentiation is not longer valid a 

discrete set, since the operation of numerical differentiation 

is ill-posed.  

Suppose that )(xf  is a generalized function. The notion 

of a generalized function is reflected in the fact that it is 

impossible to precisely measure a value due to the 

uncertainty principle and device errors, and it is only 

possible to measure average values in small neighborhoods 

of a given point.Generalized functions serve as an adequate 

apparatus for describing various physical variables. Thus, 

the question of whether integration is well-posed may be 

answered within the framework of the theory of generalized 

functions. By the definition of the derivative of a generalized 

function (distribution), the following integral identify holds: 
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where −∈ ∞
0)( Cxϕ is the set of infinitely differentiable 

functions with compact support, denoted by supp f. Then 
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which signifies the ill-posed problem of determining the 

function f  from a first kind equation, if the values of the 

generalized derivative 'f  are well-known. Similarly, it is 

possible to calculate the generalized derivative 'f  from the 

equation 
constdxf

a

=∫
0

'ϕ  Note that such ill-posed problems 

arise when determining periodic functions according to 

approximated Fourier coefficients, in which case the Fourier 

series diverges [4]. Thus, the problem of integrating 

(differentiating) generalized functions is ill-posed. 

Furthermore, the problem of integrating a numerical 

function with errors cannot be accurately solved using 

quadrature formulas without considering measurement errors. 

The proof of this statement may be found in the 

framework of the classical understanding of integration. The 

integral of a numerical function with errors does not exist, 

since there is no limit to which the integral sums converge, 

insofar as it is impossible to “crush” the partitions. The 

classical quadrature formula gives an indeterminate result 

because it is impossible to determine the value of the 

residual term (which includes second and higher order 

derivatives) due to the inaccuracy inherent to numerical 

differentiation of imprecise data. 

Note 1. A priori information about the smoothness of 

suspected dependence is insufficient to calculate the integral. 

It is necessary to also consider measurement errors and 

formulate a variational problem to minimize the residual 

term of the quadrature formula. 

Note 2. The fact that integration is an ill-posed problem is 

understood in the sense of A.N. Tikhonov's definition [1], 

when the solution is defined ambiguously. In other words, 

the result depends on the method selected. 

The problem of integrating noisy tables (signals) is 

relevant to an enormous number of applications. 

Considering measurement errors when integrating tables is 

the essence of this work. The problem of numerical 

integration is reduced to a variational one using 

regularization algorithms [1,2] that take a priori information 

into account. 

2. Noisy Integration 

Let the values of an experimental data { }iy  be tabulated 

at points ix  

,..1,)( Nixfy iii =+= σ           (1) 

are given with errors iσ . For random errors simulation 

Wolfram Mathematica 9.0 is used. Pseudorandom number 

generator algorithmically create numbers that have some 

apparent level of randomness. 

It is necessary to approximate the integral of the signal 

(function) )( ixf  for the values iy  taking into 

consideration the errors iσ . Without loss of generality, 

consider the method on a uniform grid. For irregular 

partitions, the following observations will remain valid. 

An additional difficulty for numerically integrating 

tabular data lies in the fact that the values )( ixf  may not be 

precisely calculated, since the signal dependent error in (1) 

is only a hypothesis. 

Note. The model of random deviations in the relative 

noise is also considered 

,..1),1)(( Nixfy iii =+= σ  

in the literature. With this assumption, the zeroes of an 

unknown function f may coincide with the values of an 

actual experiment exactly, but still be incorrect. 

The application of the standard quadrature formula 

assumes the existence of a continuous second order 

derivative or higher of the required dependency )(xf  

,)()(

1
∫ ∑

=

+≈
b

a

N

k
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where ka  is the weight, and Nr  is the calculation error, 

which may be only a rough approximation of the integral, 

since the values of the integrable function { })( ixf  are not 

known and a priori information about errors is not used. 

In order to correctly use quadrature formula (2), it is 

necessary to minimize the calculation errors Nr  in the set 

unknown { })( ixf  taking into consideration errors { }iσ . 

Example. Consider the grid function 

kk Nky σπ +−−= )))1/()1((8sin( , 600,..1 == NNk , 

kσ  are pseudo-random integers within the interval 

),2,2(−  

i.e., the amplitude of the noise is twice the level of the 

useful signal (Fig.1a).  

 

Figure 1а. Grid periodic function, “corrupted” with pseudo-random 

numbers at each node (additive error model). 
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Graph of the approximated indefinite integral, calculated 

using the trapezoidal formula, (Fig. 1b), shows the deviation 

(drift) -0.181672 of the null value of the integral from the 

given “function” at the end of interval at k = N. 

 

Figure 1b. Indefinite integral of the function from Figure 1a, calculated 

using the trapezoidal formula. At k = 600, a summation error appears, 

which leads to an incorrect value of the integral. 

In the following graph (Fig. 1c), the indefinite integral is 

shown as computed using the trapezoidal formula without 

accounting for noise.  

 
Figure 1c. Indefinite integral of the original non-noisy function, calculated 

using the trapezoidal formula. 

Thus, ignoring the influence of noise on the quadrature 

formula leads to an accumulation of errors (displacement of 

the result) in numerical integration with high probability, 

even though the oscillations of the signal are smoothed due 

to the stability of the quadrature formula. 

We will discuss the traditional approach to calculating the 

integrals of functions that are known with errors. At first 

glance, the integral is calculated using splines [3] for 

integrand or orthogonal polynomials, and then it is 

integrated analytically. In this case, the process of analytical 

integration includes an additional “hyper-smoothing” of the 

oscillatory interpolant )(xf , which can be demonstrated 

through a simple example. 

Let )(xf  be replaced with )sin()( xxf ωε+ . Then the 

integration undergoes a smoothing effect 

)),cos()(cos()())sin()(( badxxfdxxxf

b

a

b

a

ωω
ω
εωε −+=+ ∫∫  

that is, the second oscillating term may be neglected for 

small amplitudes ε or high noise frequencies ω  . 

The fairly trivial inequality (a priori estimate) for the 

error of the quadrature formula (2) consists of “theoretical” 

and “practical” parts. 

{ }∑
=

+≤
N

k

ki
i

NN aRr

1

max σ ,              (3) 

where the best possible theoretical estimate, or the residual 

term of the trapezoidal quadrature formula NR  may be 

presented in a format that is suitable for further study: 

∫=
b

a

N dxxf
h

R .)(
8

''
2

                (4) 

From inequality (3) it follows that the only possible way 

to increase the accuracy of numerical integration is to 

minimize the functional of the residual term NR  (4) in the 

set of unknown variables )( ixf . In this case, the calculation 

of the derivative )('' xf may be performed taking into 

consideration the known error iσ  using regularization 

tikhonov methods [1]. 

Note. Since consta

N

k

k ≤∑
=1

, the quadrature formula (2) 

is uniformly stable and is usually used to integrate tabular 

signals. The result of this operation is inaccurate, since the 

original function )(xf  is unknown. 

In order to adjust the numerical integration method to 

ensure that it is the inverse of the differentiate operator and 

to correctly calculate the residual term of theoretical error 

NR , it is necessary to expand the set of differentiable 

functions, and to interpret the approximation of the 

derivative as a solution to a Volterra integral equation of the 

first kind. Thus the function (generalized function) may be 

discontinuous, but differentiable in the sense that it is the 

solution to a integral equation of the first kind. Consider, for 

example, a Volterra integral equation that has a continuous 

right hand side, 

∫ =−
x

xdttftx

0

,)()(  

the solution to which is the generalized )(xδ  Dirac delta 

function, which signifies the limit of using the 

finite-difference approximation of derivatives in tabular data 

to calculate the residual term NR . The application of 

classical formulas of differentiation to approximate the 

residual term (4) renders it useless in the analysis of 

approximated data. 

3. Constrained Optimization Method 

The main purpose of the present paper is to formulate a 

new variational method for solving an integration problem 

with much higher efficiency as shown below. We use the 

idea of the ill-posed problem [1] developed in the second 
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half of the twentieth century is to correctly calculate NR  

The minimum NR  is a well-posed optimization problem 

for the conditional extreme of the functional 

dxxuS

b

a
Uxu ∫⊂

= )(min
)(

                       (5) 

on the set of unknown functions )()( ''
ii xfxu = , a 

constraint is imposed in the form of a union of inequalities: 
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ix  are fixed nodes of a grid that covers the computational 

area,  

)()()()())((
'

afxafduxxuf i

x

a

ii

i

++−= ∫ ξξξ    (7) 

iσσ max= . 

The parameter )(' af  may be determined by formula (7) 

when bxN =  through the parameter )(bf . In that case 

)(аf  and )(bf  stay free (in terms of error) and vary 

freely (6). When approximating the functional (5) and 

integral (7), linear and piecewise linear interpolation are 

used. 

Note 1. In the process of minimizing the functional (5), 

the unknown signal undergoes a restoration (correction), 

since the residual term (4) acts as a regularization term of the 

ill-poseed problem. The proof that the conditional 

minimization problem is well-posed coincides with theorem 

2, chapter 2 of [1]. 

Note 2. When the relative noise of the signal corresponds 

to formula ,..1),1)(( Nixfy iii =+= σ  the constraint (6) in 

problem (5) is changed to the inequality 


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Using the kk Nky σπ +−−= )))1/()1((8sin( from 

example, 2=σ and values f found for the second derivative 

iu , it is not difficult to obtain the values of integral (2) by 

analytics formulas, using relation (7) or trapezoidal 

quadrature. The value of the integral was -0.00231485, 

which was 78 times better than using the classical approach 

without taking errors into consideration. 

To test the accuracy of the proposed method, we 

examined the problem of integrating an error ]1,1[−∈kσ  

equal to null value 1000..1,0)( =≡ kxf k . While the 

trapezoidal rule gives the integral's value as 0.0748128 at 

k=1000, the new method of minimizing the residual term 

leads to a “null” error of -2.48715 *10
-7

. 

There is particular interest in the integration of 

discontinuous digital signals, since classical methods of 

smoothing are not applicable to such data. To test the method, 

the function )(xsign  was selected, with noise 

)4,4(−∈kσ  on the interval ].1,1[−  The proposed method 

gave the integral's value as 0.0505905 at 500 nodes, which is 

an order of magnitude more accurate than the direct 

application of the trapezoidal method. 

Numerical experiments using the Simpson quadrature 

formula on various noisy digital functions were also 

performed. The accuracy of integration was also increased 

when applying the same Simpson’s formula to the set of 

corrected values of the function taking into consideration the 

minimization of the residual term. However, there is not big 

difference between trapezoidal and Simpson’s formulas in 

the sense of accuracy for noisy tables. 

4. Conclusion 

The numerical integration of signals given in tabular form 

is usually conducted using quadrature formulas, and 

experimental errors are not taken into consideration. In fact, 

quadrature formulas yield unpredictable results for various 

reasons. The first reason lies in the impossibility of 

establishing a priori smoothness of input data, and the 

second is that there is no way to evaluate the result of 

integration. Theoretical approximations of the error of 

quadrature formulas (3) may not be useful for actual values 

due to the inability to accurately calculate the residual term. 

The traditional approach consists of applying various 

smoothing filters. In this case, algorithms are used that do 

not depend on the task of integrating itself, which leads to 

excessive smoothing. The authors propose a new method for 

solving the problem of numerically integrating inaccurate 

signals that minimizes the residual term of the quadrature 

formula (4) for the set of unknown values of the signal by 

using ill-posed problem algorithms [1]. 

The idea behind the method lies in correcting a table of 

physical data (within the bounds of known errors) so that the 

absolute value of the residual term of the quadrature formula 

corresponds to the true value of the error of numerical 

integration. In this case, the repeated application of the 

quadrature formula to the corrected table will increase the 

accuracy of integration. 

The high level of effectiveness of this new method, for 

which it is sufficient to know the error level of the signal is 

demonstrated through examples. 
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