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Abstract: The objective of this paper is to study thermal conductivity and magnetic field intensity effects on heat and 

mass transfer flow over a vertical channel both numerically and analytically. The non-linear partial differential equations 

governing the flow are non-dimensionalised, simplified and solved using Crank Nicolson type of implicit finite difference 

method. To check the accuracy of the numerical solution, steady state solutions for velocity, temperature and concentration 

fields are obtained by using perturbation method. Graphical results for velocity, temperature, concentration, skin friction, 

Nusselt number and Sherwood number have been obtained, to show the effects of different parameters entering in the 

problem. Results from these study shows that velocity, temperature and concentration increases with the increase in the 

dimensionless time until they reach steady state value. Also, it was observed that the analytical and numerical solutions 

agree very well at large values of time. 
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1. Introduction 

The influence of magnetic field intensity and thermal 

conductivity on the study of heat and mass transfer flow 

over a vertical channel is currently attracting the attention 

of a growing number of researchers because of their 

immense potential use in science, technology and 

engineering applications. The effect of magnetic field on 

viscous incompressible flow of electrically conducting fluid 

has its importance in many applications such as 

metallurgical processes which involves the cooling of 

filaments, in the fields of stellar and planetary magneto 

spheres, aeronautics, plasma physics, nuclear science etc. 

Magnetic field intensity also plays important role in 

agriculture, petroleum industries, geological formations, 

thermal recovery of oil and many other places that are 

important for our industrial and financial developments. In 

most of the studies on hydromagnetic heat and mass 

transfer, thermal conductivity has been taken as constant. In 

metallurgical engineering processing, the thermal 

conductivity is in fact temperature dependent. That is the 

numerical value of thermal conductivity changes with 

temperature. Therefore to predict the flow of heat and mass 

transfer accurately, mathematical models must consider the 

variation of thermal conductivity with temperature. 

Comprehensive reviews on the subject to the above 

problems have been made by Evans [6] and Sparrow et al. 

[17]. Many researchers have studied the effects of thermal 

conductivity and magnetic field intensity on free 

convection flow of heat and mass transfer.  

Cheng [4] studied the effect of magnetic field on heat 

and mass transfer by natural convection from a vertical 

surface in porous medium. Venkateswalu et al. [19] 

investigated finite difference analysis on convective heat 

transfer flow through a porous medium in a vertical 

channel with magnetic field. Sharma and Singh [16] have 

discussed in detail the effect of variable thermal 

conductivity in MHD fluid flow over a stretching sheet 

considering heat source and sink parameter. In another 

article, Mahmoud [8] studied the effect of variable thermal 

conductivity and radiation on the micropolar fluid flow in 

the presence of a transverse magnetic field. Noreen et al. [9] 

have presented a mathematical model investigating the 

mixed convective heat and mass transfer effects on 

peristaltic flow of magneto hydrodynamic pseudo plastic 
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fluid in a symmetric channel. Additionally, Zhang and 

Huang [20] described the effect of local magnetic field on 

electrically conducting fluid flow and heat transfer. Also, 

work on the effect of variable viscosity and thermal 

conductivity of micropolar fluid in a porous channel in 

presence of magnetic field has been developed by Patowary 

[12]. Similarly, Seddek et al. [15] studied the effects of 

temperature dependent viscosity and thermal conductivity 

on unsteady MHD convective heat transfer past a semi-

infinite vertical porous plate taking into account the effect 

of a magnetic field in the presence of variable suction.  

Elbashbeshy et al. [5] have presented a theoretical study 

on the effect of magnetic field on flow and heat transfer 

over a stretching horizontal cylinder in the presence of a 

heat source/sink with suction/injection. Ahmed [1] 

analyzed a mathematical model of induced magnetic field 

with viscous/magnetic dissipation bounded by a porous 

vertical plate in the presence of radiation. Salem [14] 

investigated variable viscosity and thermal conductivity 

effects on MHD flow and heat transfer in visco elastic fluid 

over a stretching sheet. In another article, a steady two-

dimensional magneto hydrodynamic heat and mass transfer 

free convection flow along a vertical stretching sheet in the 

presence of magnetic field has been examined by Hosain 

and Samand [7]. A numerical investigation on the study of 

the effect of thermal conductivity on MHD flow past an 

infinite vertical plate with Soret and Dufour effects has 

been carried out by Usman and Uwanta [18]. Parvin [11] 

presented a review of magneto hydrodynamic flow heat and 

mass transfer characteristics in a fluid. In a related 

development, Oahimire and Olajuwon [10] described the 

study of hydro magnetic flow of a viscous fluid near a 

stagnation point on a linearly stretching sheet with variable 

thermal conductivity and heat source. Recently, Qasim et al. 

[13] have considered MHD boundary layer slip flow and 

heat transfer of Ferro fluid along a stretching cylinder with 

prescribed heat flux. Most recently, Azizian et al. [2] 

investigated the effect of magnetic field on laminar 

convective heat transfer of magnetic nano fluids.  

In spite of all these studies, the present investigation 

focuses on the effect of thermal conductivity on heat and 

mass transfer flow over a vertical channel taking into 

account the induced magnetic field intensity. The present 

study may have useful applications to several transport 

processes as well as magnetic material processing.  

2. Mathematical Formulation 

Consider an unsteady flow of a viscous incompressible 

fluid past a vertical channel with variable thermal 

conductivity and magnetic field intensity. A magnetic field 

B0
of uniform strength is applied transversely to the 

direction of the flow. The x ' −axis is taken along the plate 

in the vertically upward direction and the y' − axis is 

normal to the plate in the direction of the applied uniform 

magnetic field. The fluid being electrically conducting, the 

magnetic Reynolds number is assumed to be very small and 

hence the induced magnetic field can be neglected in 

comparison with the applied magnetic field in the absence 

of any input electric field. It is also assumed that the effect 

of viscous dissipation is negligible in the energy equation. 

Under the above assumptions as well as the Boussinesq’s 

approximation, the equations of conservation of mass, 

momentum, energy and species governing the free 

convection boundary layer flow past a vertical channel can 

be expressed as: 

'
0

y'

ν∂ =
∂                                                        (1) 

∂u'

∂t '
= ν ∂2u'

∂y'2
− σ B0

2

ρ
u'' − ν

k*
u' +

gβ T
' −T

'

0( ) + gβ *
C

' − C
'

0( )
                      (2) 

∂T
'

∂t '
= k0

ρCp

∂
∂y '

1+α T ' − T '

0( ) ∂T
'

∂y '









−

1

ρCp

∂q r

∂y '

             (3) 

∂C '

∂t '
= D

∂2C '

∂y '2
− R* C ' − C '

0( )                           (4) 

with the following initial and boundary conditions as 

follows: 

              t ≤ 0, u' = 0,T ' → T '

w,C ' → C '

w  for all y '  

              t > 0, u' = 0,T ' = T '

w,C ' = C '

w
 at y ' = 0  

u' = 0,T ' = T0,C
' = C0
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The thermal radiation is assumed to be present in the 

form of a unidirectional flux in the y −  direction that is 

transverse to the vertical surface. Using the Rosseland 

approximation by Brewster [3] the radiative heat flux qr
 is 

given by:  

qr = − 4σ 0

'

3k '

∂T ' 4

∂y'                                           (6) 

where u' and v ' are the Darcian velocity components in the 

x and y directions respectively, t is the time, ν is the 

kinematic viscosity, g is the acceleration due to gravity, 

β is the coefficient of volume expansion with temperature, 

ρ is the density of the fluid, σ is the scalar electrical 

conductivity, β* is the volumetric coefficient of expansion 

with concentration, Cp is the specific heat capacity at 

constant pressure, k* is the dimensionless permeability of 

the porous medium, k0 is the dimensionless thermal 

conductivity of the ambient fluid, α is a constant 
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depending on the nature of the fluid, R* is the 

dimensionless chemical reaction, D is the coefficient of 

molecular diffusivity, B0 is the magnetic induction of 

constant strength, qr is the radiative heat flux in the 

y − direction, σ 0

'
is the Stefan-Boltzmann constant, k ' is 

the mean absorption coefficient, T ' and T '

0
are the 

temperatures of the fluid inside the thermal boundary layer 

and the fluid temperature in the free stream respectively, 

while C ' and C '

0
are the corresponding concentrations. 

To obtain the solutions of equations (2), (3) and (4) 

subject to the conditions (5) in non-dimensional forms, we 

introduce the following non-dimensional quantities: 
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Applying these non-dimensionless quantities (7), the set 

of equations (2), (3), (4), and (5) reduces to the following: 
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The initial and boundary conditions in non-dimensional 

quantities are: 

        t ≤ 0, u = 0,θ =,C = 0  for all y  

t > 0, u = 0,θ =1,C =1 at y = 0                           (11) 

        u = 0,θ = 0,C = 0 at  y =1 

where M is the magnetic field parameter, k is the 

porous parameter, Gr is the thermal Grashof number, 

Gc is the solutal Grashof number, Pr is the Prandtl number, 

λ is the variable thermal conductivity parameter, R is the 

radiation parameter, rK is the chemical reaction parameter, 

Sc is the Schmidt number, t is the dimensionless time, 

while u and v are the dimensionless velocity components 

in −x and −y directions respectively. 

The skin friction, Nusselt number and Sherwood number 

are the important physical parameters for this type of 

boundary layer flow, which in non- dimensional form 

respectively are given by: 

The skin-friction coefficient, Nusselt number and 

Sherwood number are the important physical parameters 

for this type of boundary layer flow, which in non-

dimensional form respectively are given by: 
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3. Analytical Solutions  

The governing equations presented in this problem are 

highly coupled and non linear and exhibit no closed-form 

solutions. In order to check the accuracy of the present 

numerical scheme of this model, there is need to compare 

numerical solutions with the analytical solutions. Since the 

governing equations are non-linear, it is, therefore, of 

interest to reduce the governing equations of the present 

problem to a form that can be solved in closed form. At 

steady state the physical parameters do not have any effect, 

hence the steady state equations and boundary conditions 

for the problem can be written as 
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The boundary conditions are: 

0, 1, 1, 0,

0, 0, 0 1.

u C at y

u C at y

θ
θ

= = = =
= = = =                (16)

 

To find the approximate solution to equations (13)-(15) 

subject to equation (16), we use perturbation method, 

which is a method that is used to approximate the solution 

to a differential equation analytically. Therefore the 

physical variables ,u  θ and C  can be expanded in the 

power of ( )1R << . This can be possible physically as R 

for the flow is always less than unity. Hence we can assume 

solution of the form 



Applied and Computational Mathematics 2014; 3(2): 48-56 51 

 

 

( ) ( )
( ) ( )
( ) ( )

2

0 1

2

0 1

2

0 1

0( )

0( )

0( )

u u y Ru y R

y R y R

C C y RC y R

θ θ θ
= + +

= + +

= + +
                          (17) 

Using equation (17) in equations (13)-(16) and equating 

the coefficient of like powers of R, we have: 
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Solving equations (18)-(23) with the help of equation 

(24), we get: 
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In view of the above equations the solutions are: 
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4. Numerical Solution Procedure 

In order to solve the unsteady non-linear coupled partial 

differential equations (8)-(10) with the associated initial 

and boundary conditions (11), an implicit finite difference 

technique of Crank-Nicolson type which is known to 

converge rapidly and unconditionally stable has been 

employed. The finite difference equations corresponding to 

equations (8)-(10) using the method are as follows: 
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The initial and boundary conditions may be expressed as  
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      where H corresponds to 1. 

Equations (34), (35) and (36) may be written  

respectively as follows: 
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The index i corresponds to space y and j corresponds to 
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time t. y∆ and t∆  are the mesh sizes along y-direction and 

time t-direction respectively. The finite difference equations 

(38)-(40) at every internal nodal point on a particular n-

level constitute a tri-diagonal system of equations, which 

are solved by using the Thomas algorithm. 

In each time step, the temperature and concentration 

profiles have been computed first from equations (39) and 

(40) and then the computed values are used to obtain the 

velocity profile at the end of time steps that is , 1i ju +  

computed from equation (38). This process is carried out 

until the steady state is reached. The steady-state solution 

of the convergence criteria for stability of the scheme is 

assumed to have been reached, when the absolute 

differences between the values of velocity, temperature and 

concentration at two consecutive time steps are less than 
510− at all grid points. Computations are carried out for 

different values of physical parameters involved in the 

problem.  

5. Results and Discussion 

In order to report on the analysis of the fluid flow, 

numerical computations are carried out for various values 

of magnetic parameter ( M ), thermal Grashof number 

( Gr ), solutal Grashof number ( Gc ), permeability 

parameter ( k ), thermal conductivity parameter ( λ ), 

radiation parameter ( R ), Prandtl number ( Pr ), Schmidt 

number ( Sc ), chemical reaction parameter ( Kr ) and 

dimensionless time ( t ). Therefore, this study is focused on 

the effects of these governing parameters on the transient 

velocity, temperature as well as concentration profiles. Here, 

the main discussion is restricted to the aiding of favourable 

case only, for fluids with Prandtl number 

( Pr = 0.71,1.0,3.0, 7.0 ) that represent air, atmospheric 

pressure, Freon and water respectively. The diffusing 

chemical species of most common interest in air has 

Schmidt number and is taken for water ( Sc = 0.60), Carbon 

dioxide ( Sc = 0.94 ), Methanol ( Sc =1.0 ) and Propyl 

benzene ( Sc = 2.62). The value of thermal Grashof number 

is taken to be positive which correspond to the cooling of 

the plate. 

 The default values of the thermo physical parameters are 

specified as follows: 

Gr = 5,Gc = 5, M = 2, Pr = 0.71, k = 0.5,

R = 5, λ = 0.5, Kr =1, Sc = 0.60
 

 All graphs therefore correspond to these values unless 

otherwise indicated. 

 Figures (1) and (2) illustrate the influence of thermal 

Grashof number Gr in case of cooling of the plate and the 

solutal Grashof number Gc . It is noticed that an increase 

in Gr and Gc results in an increase in the velocity. It is 

due to the fact that increase in the values of Gr and 

Gc has the tendency to increase the thermal and mass 

buoyancy effect. This gives rise to an increase in the 

induced flow. In figure (3) it is observed that increasing 

permeability parameter k  enhances the velocity of the 

fluid. The effect of magnetic field parameter M in case of 

cooling the plate on the velocity profile is depicted in figure 

(4). It is found that the velocity decreases with increasing 

magnetic parameter. The effect of radiation parameter R on 

the temperature variation for two working fluids air 

( Pr = 0.71) and water ( Pr = 7.0 ) is graphically illustrated in 

figure (5). It is evident from this figure that as R increases, 

considerable reduction is observed in temperature profiles. 

Figure (6) reveals the transient temperature profiles against 

y (distance from the plate) for different values of thermal 

conductivity parameter ( λ = V ) in case of air ( Pr = 0.71) 

and water ( Pr = 7.0 ). It is seen that as λ  increases for both 

air and water, the temperature increases which is physically 

true because thermal conductivity of fluid increases with 

increasing Prandtl number, resulting in thermal boundary 

layer thickness thereby increasing the temperature profiles. 

 Figures (7) and (8) describe the behavior of 

concentration profiles for different values of Schmidt 

number Sc and chemical reaction parameter Kr . A 

decrease in concentration with increasing Sc as well as 

Kr is observed from these figures. Also, it is noted that the 

concentration boundary layer becomes thin as the Schmidt 

number as well as the chemical reaction parameter 

increases. Figures (9-11) show the velocity distribution, 

temperature and concentration profiles with variation of 

dimensionless time t respectively. It can be seen that the 

velocity, temperature and concentration of the fluid 

increases with time and ultimately reaches their steady state 

values for air ( Pr = 0.71). 

The validity of the present model has been verified by 

comparing the numerical solutions and the analytical 

solutions through figures (12)-(14) for velocity, temperature 

and concentration profiles respectively. These results are 

presented to illustrate the accuracy of the numerical 

solution. It is observed that the agreement between the 

results is good because the curves corresponding to 

analytical and numerical solutions are lying close to the 

other. This has established confidence in the numerical 

results reported in this paper.  

Figure (15) shows the variation of skin friction 

coefficient against magnetic parameter M for different 

values of thermal Grashof number Gr , solutal Grashof 

number Gc and permeability parameter k . It depicts that 

the skin friction increases with an increase in any of these 

parameters Gr , Gc and k . The effects of Prandtl number 

Pr  and thermal conductivity λ  on the Nusselt number 

against radiation parameter R are presented in figure (16). 

It is observed that the rate of heat transfer decreases with an 

increasing Pr . Also, it is found that the rate of heat 

transfer falls with increasing thermal conductivity. Finally, 

figure (17) demonstrates the effect of Schmidt number 

Sc and chemical reaction parameter Kr on Sherwood 

number. It displays that the rate of concentration transfer 

increases with increasing values of Scand Kr .  
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Fig (1). Velocity profile for different values of thermal Grashof number 

 

Fig (2). Velocity profile for different values of solutal Grashof number 

 

Fig (3). Velocity profile for different values of porous parameter 

 

Fig (4). Velocity profile for different values of magnetic parameter 

 

Fig (5). Temperature profile for different values of radiation parameter 

 

Fig (6). Temperature profile for different values of variable thermal 

conductivity 

 

Fig (7). Concentration profile for different values of Schmidt number 

 

Fig (8). Concentration profile for different values of chemical reaction 

parameter 

 

Fig (9). Velocity profile for different values of dimensionless time 

 

Fig (10). Temperature profile for different values of dimensionless time 
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Fig (11). Concentration profile for different values of dimensionless time 

 

Fig (12). Comparison of  numerical and analytical solutions for velocity  

profile 

 

Fig (13). Comparison of  numerical and  analytical solutions for 

Temperature profile 

 

Fig. (14). Comparison of numerical and analytical solutions for 

Concentration profile 

 

Fig (15). Skin friction profile for different values of porous parameter, 

thermal and solutal Grashof numbers 

 

Fig (16). Nusselt number profile for different values of Prandtl number 

and variable thermal conductivity 

 

Fig (17). Sherwood number profile for different values of Schmidt number 

and chemical reaction parameter 

6. Conclusions 

In this paper, the study on the effect of variable thermal 

conductivity on heat and mass transfer flow over a vertical 

channel with magnetic field intensity using Crank-Nicolson 

type of implicit finite difference method has been carried 

out. The expressions for the velocity, temperature and 

concentration fields have been constructed and the effects 

of various parameters on heat and mass transfer 

characteristics of the fluid flow are discussed graphically. 

From the present numerical investigation the following 

conclusions have been drawn: 

1. The velocity of the fluid increases with an increase in 

thermal Grashof number, solutal Grashof number, 

permeability parameter and dimensionless time, while 

it decreases with an increase in magnetic field 

parameter as shown in Figs. (1-4) and Fig. (9.) 

2. Increasing thermal conductivity parameter and 

dimensionless time leads to increase the fluid 

temperature. This is clearly indicated in Figs. (6) and 

(10). 

3. A decrease in concentration profile with increasing 

Schmidt number as well as chemical reaction 

parameter is observed in Figs. (7) and (8). 

4. The skin friction coefficient increases with increasing 

thermal Grashof number, solutal Grashof number and 

permeability parameter as illustrated in figure (15). 

5. The rate of heat transfer in terms of Nusselt number 

falls with increase in Prandtl number and thermal 

conductivity parameter is noticed in figure (16). 

6. It is marked in figure (17) that the rate of 

concentration transfer increases with increasing values 

of Schmidt number and chemical reaction parameter. 
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7. The accuracy of the present model has been verified 

by comparing numerical and analytical solutions and 

the agreement between the results is excellent. This is 

clearly shown in Figs. (12-14). 

The solutions presented in this paper for various thermo 

physical effects would be useful for subsequent analysis in 

heat and mass transfer in polymer processing, metallurgical 

transport modeling and many geophysical processes like 

crude oil recovery. 

Appendix 

r1 = ∆t

∆y( )2
, r2 = 2∆tM, r3 = 2∆tGr, r4 = 2∆tGc,

H =1+ λθ, r5 = Hr1, r6 = 2λr1, r7 = 2∆tR,

r8 = 2∆tScKr, r9 = 2∆t
1

k
, d1 = r1, d2 = 2 1+ r1( ),

d3 = 2 − 2r1 − r9, d4 = r2, d5 = r3, d6 = r4, d7 = r5,

d8 = 2 Pr+ r5( ), d9 = 2 Pr− r5( ), d10 = r6, d11 = r7,

d12 = r1, d13 = 2 r1+ Sc( ), d14 = 2 Sc − r1( ), d15 = r8,

A =1− B, B = −e
ScKr

e
− ScKr − e

ScKr( )
, p = M + 1

k









,

E1 = Gr

p
, E2 = − Gr

p
, E3 = − GcA

ScKr − p
,

E4 = − GcB

ScKr − p
, E5 = − Gr

6p
, E6 = Gr

2 p
,

E7 = 6E5

p
− Gr

3p
, E8 = 2E6

p
,

H1 = − H2 + E1 + E3 + E4( ),
H3 = − H4 + E8( ),

H2 = 1

e
− p − e

p( )
−E1 1− e

p( ) − E2 − E3 e
ScKr − e

p( ) −

E4 e
− ScKr − e

p( )















,

H4 = 1

e
− p − e

p( )
−E8 1− e

p( ) − E5 + E6 + E7 + E8( )( ).

 

Nomenclature 

C – concentration 

C
p

 – specific heat at constant pressure 

D  - mass diffusivity 

g – acceleration due to gravity 

Gr  – Grashof number 

Gc  – solutal Grashof number 

k  – porous parameter 

Nu  – Nusselt number 

Pr  – Prandtl number 

Sc  – Schmidt number 

R - radiation parameter 

r
K - chemical reaction parameter 

T  – temperature 

f
C -Skin friction 

Sh - Sherwood number 

u, v – velocities in the x and y-direction respectively 

x, y – Cartesian coordinates along the plate and normal to it 

respectively 

0
B  - magnetic field of constant strength 

M  – magnetic field parameter 

Greek Letters 

β* - coefficient of expansion with concentration 

β - coefficient of thermal expansion 

ρ- density of fluid 

θ- dimensionless temperature 

υ- kinematic viscosity 

σ '

0
- Stefan Boltzmann constant 

λ  - variable thermal conductivity 

σ - electrical conductivity of the fluid 

Subscripts 

w - condition at wall 

∞ - condition at infinity 
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