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Abstract: This article proposes Perturbation Method (PM)ital fan approximate solution for the problem of aisa
symmetric Newtonian fluid squeezed between twodargrallel plates. After comparing figures betwapproximate and
exact solutions, we will see that the proposedt&mia besides of handy, are highly accurate ancetbee that PM is
efficient.
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importance in hydrodynamic lubrication theory. Th{g]
and [3] analysed isothermal compressible squedmnts fi
neglecting inertial effects; while [4] found an d&gjt
solution, taking into account these effects. Alsmme
numerical solutions to these problems have beamdfcgauch

as those provided in [5] and [6]. Additionally, [@hd [8]
extended the previous investigations for the cds#oa
between rotating parallel plates.

The perturbation method (PM) is a widely known and

The purpose of this job is the search for an agiprate established m(_ethod; i.t is among thg pioneer tecksgo _
solution for the nonlinear problem, which describes @PProach various kinds of nonlinear problems. This
viscous, incompressible fluid, squeezed between twirocedure was originated by S.D. Poisson and deteby J.
infinite parallel plates, separated instantaneoastijstance - Poincare. Although the method appeared in thig &8th

2lso that the plates are moving towards each othér avi century, the application of a perturbation procedoarsolve
certain velocity, say\(see Fig. 1). nonlinear differential equations was performedrlate that

As mentioned in [1] these fluids are of paramounPemurV' The most significant efforts were focuseudl

1. Introduction

Although the studies of squeezing flows have itgins
in the 19th century, at present time, it is an ésaf
considerable importance due to its practical apfibns in
different areas such as physical, biophysical, db&im
engineering, and food industry, also are relevariguid
metal lubrication theory, polymer processing, coesgion
and injection molding, among many others.
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celestial mechanics, fluid mechanics, and aerodycgm analytical approximate solution for the nonlineaokgem
[9,10]. which describes an axisymmetric Newtonian fluidezped
In a broad sense, it is possible to express a meali between two large parallel plates given by
differential equation in terms of one linear pantaother
nonlinear. The nonlinear part is considered as allsm dy)/drt+ey()dy(x)/dx=0,
perturbation through a s_maII parameter .(the .pealnimh 0<x<1, y(0)=0, y"(0)=0, y(1)=1,y'(1)=0, (3)
parameter). The assumption that the nonlinearipantall
compared to the linear is considered as a disadgardf the where,s is a positive parameter of the fluid, relatedt® i
method. There are other modern alternatives to findensity and with instantaneous separation dist@see
approximate solutions to the differential equatichet Fig. 1).
describe some nonlinear problems such as thosel loese It is possible to find a handy solution by applyitige
variational approaches [11-14], tanh method [15]l-T-HPM method. Identifying terms
exp-function [16-18], Adomian’s decomposition metho L(v)=y@ 4
[19-24], parameter expansion [24], homotopy pedtidn )=y, )
method [14,24,26-28,29-47], homotopy analysis metho N(Y)=y(X)y"" (X) (5)
[48], homotopy asymptotic method [26],perturbation
method [49,50], and (G'/G)-expansion method [51,52vhereprime denotes differentiation with respect.to
among many others. Also, a few exact solutiontdinear Identifyinge with PM parameter, we assume a solution for
differential equations have been reported occaljofg].  (3) in the form
Although the PM method provides in general, better _ 2
results for small perturbation parameters< 1, we will see YO)=YolX)+ ey () +eYo(X) e Ys()+eya0) . (6)
that our approximations, besides to be handy, laageod (see (2))
accuracy, even for relatively large values of thetyrbation
parameter [49,50]. l w
This paper is organized as follows. In Section 2 w
introduce the basic idea of the PM method. ForiGe&, we P N
provide the basic equation for the problem of the g Z P
axisymmetric Newtonian fluid above mentioned. Saci# 2 2¢
discusses the main results obtained. Finally, eefbri e =
conclusion is given in Section 5.

2. Basic | dea of Perturbation Method [

Figure 1. Shows an axisymmetric fluid, squeezed between rifirate
Let the differential equation of one dimensionahiiear ~ Parallel plates.

tem be in the f . - . .
system be In the form On comparing the coefficients of like powers:@fcan be

L(x)+eN(x)=0, (1) solved fory(x), ya(X), Y=(X), ys(X),..., and so on. Later, we

] ) . will see that a very good handy result is obtaingdteeping
where we assume that x is a function of one vaeigbk(t),  a second order approximation.

L(x) is a linear operator which, in general, contains

derivatives in terms df N(x) is a nonlinear operator, aad 0) y0(4)=0,
is a small parameter. y0(0)=0, y0"(0)=0, y0(1)=1, y0'(1)=0, (7)
Considering the nonlinear term in (1) to be a small

: . / 1) y1(4)+y0y0™=0,
pe_rturbauon and assuming that the solution forddn be y1(0)=o,gy)1¥(c§)=)o,yy)£(1):o, y1'(1)=0, ®)
written as a power series in the small parameter
_ 2 §2) y2(4)+yOy1"'+yly0"=0,
X(OZHot Xy O+ exa(ty+ @ y2(0)=0y2'(0)=0y2(1)=0y2'(1)=0,  (9)

Substituting (2) into (1) and equating terms having Thus. the results obtained are
identical powers o, we obtain a number of differential ’

equations that can be integrated, recursively,ind the yO(X)=(3/2)x—(1/2)x3, (20)
values for the functiong(t), x(t), X(t), -...
y1(X)=(19/560)x—(117/1680)x3+(3/80)x5—(1/560)x21)
3. Approximate Solution for a y2(x)=—(137/10780)x—(443/517440)x3+
Nonlinear Problem of Fluids (17/2800)x5—-(177/39200)x7+

The objective of this section is employ PM, to fiad (1/1680)%-(3/123200)%", (12)
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By substituting (10) thru (12) into (6) we obtaisecond
order approximation for the solution of (3). better results for small perturbation parameters 1 (see

Considering as cases study, the values of parasetér (1)) and when are included the most number of térom
and ¢=3; we obtain the following handy approximate(2). To be precises is a parameter of smallness, which
solutions measure how greater is the contribution of lineamtL(x)
than the one fronN(x)in (1). Fig. 2 and Fig. 3 shows a
noticeable fact, (13) and (14)turn out to be a good
approximation of (3), although perturbation paraared=1
ande=3 are, indeed, large.

Finally, our approximate solutions do not dependaon
adjustment parameter; thus they are, in princigneral
expressions for the proposed problem.

It is well known that PM method provides, in genera

y(X)=(859/560)x—(295199/517446)247/39200)%
(61/1400)%~(3/123200)%—

(1/1680)R-137/107800 (13)

y(X)=(897/560)x—(24721/34496)(1803/39200)%
(117/700)%—(27/123200)%+

(3/560)X—-1233/107800 (14)

As a matter of fact, we will see that (13) and (a8 also,
highly accurate.

5. Conclusions

In this study, PM was presented to construct aitallyt
approximate solutions for nonlinear differentialatjons in
the form of rapidly convergent series. In ordeptove the

The fact that the PM depends on a parameter, wkich versatility of this method, we proposed as an exartipe
assumed to be small, suggests that the methodadifoited  approximate solution for the nonlinear differentégjuation
use. In this work, PM method has been applied,essfally that describes a viscous, incompressible fluid,esgad
to the problem of finding approximate solutions forbetween two infinite parallel plates with mixed bdary
nonlinear differential equation with mixed boundaryconditions, obtaining acceptable results. The sscoé PM
conditions that describes an axisymmetric Newtoffiiaid  for this case, where we employed large values for
squeezed between two large parallel plates.

Fig. 2 and Fig. 3 shows the comparison between thmossibility to apply it in other nonlinear problensstead of
approximate solutions (13) and (14) for differehntiquation  using other sophisticated and difficult methodsrfriFig. 2
(3) with a built-in numerical routine for BVP fromaple 15. and Fig. 3, it is deduced that the proposed saistisave
It can be noticed that figures are in good agre¢nsbowing good precision.
the accuracy of proposed solutions. This proves the
efficiency of PM method in this case, despite &f fict that
it was only considered the second-order approxonatdo References
the equation to be solved. Therefore, accuracy lpan
increased considering higher order approximations.
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