
 

Applied and Computational Mathematics 
2013; 2(6): 152-158 

Published online December 30, 2013 (http://www.sciencepublishinggroup.com/j/acm) 

doi: 10.11648/j.acm.20130206.18  

 

Exact solutions of two-dimensional nonlinear Schrödinger 
equations with external potentials 

Nalan Antar
1, *

, Nevin Pamuk
2
 

1Department of Mathematics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey 
2University of Kocaeli, Kocaeli Vocational High School, Kullar, 41300, Kocaeli – TURKEY 

Email address:  
antarn@itu.edu.tr (N. Antar) 

To cite this article: 
Nalan Antar, Nevin Pamuk. Exact Solutions of two-Dimensional Nonlinear Schrödinger Equations with External Potentials. Applied and 

Computational Mathematics. Vol. 2, No. 6, 2013, pp. 152-158. doi: 10.11648/j.acm.20130206.18 

 

Abstract: In this paper, exact solutions of two-dimensional nonlinear Schrödinger equation with kerr, saturable and quintic 

type of nonlinearities are studied by means of the Homotopy analysis method (HAM). Linear stability properties of these 

solutions are investigated by the linearized eigenvalue problem. We also investigate nonlinear stability properties of the exact 

solutions obtained by HAM by direct simulations. 
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1. Introduction 

In recent years, there have been so many mathematical 

methods to find approximate solutions of non-linear 

problems which come from various field of science and 

engineering [1]-[5] [6]-[14]. One of them is Homotopy 

analysis method (HAM). Homotopy analysis method, 

originally presented by Liao in 1992, has embedding 

parameters p and non-zero auxiliary parameter h  which 

provides us with a simple way to adjust and control the 

radius of convergence of series solution. Later, this 

parameter h is called convergence-control parameter. 

Solitons are localized nonlinear waves and occur in many 

branches of physics. Their properties have provided 

fundamental understanding of complex nonlinear systems. 

In recent years there has been considerable interest in 

studying solitons in system with periodic potentials or 

lattices, in particular, those that can be generated in 

nonlinear optical materials ([15]-[18]) in order to get stable 

solitons. In two-dimensional geometry, fundamental solitons 

are unstable in two-dimensional NLS equation with cubic 

nonlinearity. The Optical lattices such as periodic and 

quasicrystal lattices, are not necessary for stability of the 

solitons in the self-focusing cubic media [19]. 

The purpose of the paper, we obtain explicit series 

solutions of nonlinear Schrödinger equations with an 

external potential under kerr, saturable and quintic 

nonlinearities by Homotopy analysis method. The nonlinear 

stability of the exact solutions of NLS equation with kerr, 

cubic and saturable nonlinearities under the external 

potential are studied by direct computations. We also 

investigate the linear spectrum of the exact solutions by 

using the Fourier Collocation method ([20]). 

2. Homotopy Analysis Method 

In this section, we apply the homotopy analysis method to  

two-dimensional nonlinear Schrödinger equation with kerr, 

saturable and quintic nonlinearities under the external 

potentials. 

In order ro show the basic idea of HAM, let us consider 

the following nonlinear differential equation 

0=)],([ truN                    (1) 

where N  is a nonlinear operator that represents the whole 

equation, r  and t  are independent variables and ),( tru  

is an unknown function respectively. By means of 

generalizing the traditional homotopy, Liao constructs a new 

homotopy which is called zero-order deformation equation 

([1],[10], [11]). This homotopic equation is the following 

),(),(=)]()()[(1 Φ−Φ− NtrphHuLLp o      (2) 

where [0,1]∈p  is an embedding parameter, 0≠h  is a 

convergence control parameter, 0),( ≠trH  is an auxiliary 

function, L  is a linear operator, 0u  is the zeroth 
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approximate function and );,( ptrΦ  is an unknown 

function. Obviously, when 0=p  and 1=p , it holds 

),(=;0),( 0 trutrΦ                     (3) 

),(=;1),( trutrΦ                      (4) 

respectively. So, as p  increases from 0 to 1, );,( ptrΦ  

varies from the initial guess 0u  to .u  Expanding 

);,( ptrΦ  in Taylor series with respect to the p , we can 

write 

...),(),(),(=);,( 2
2

10 +++Φ truptrputruptr     (5) 

where 

.|
!

1
=),( 0=pk

k

k
pk

tru
∂

Φ∂
               (6) 

If the auxiliary linear operator, the initial guess, the 

convergence control parameter h , and the auxiliary 

function are properly chosen, then the above series 

converges at 1=p , which is proved by [1]. So we can find 

infinite series as 

....),(),(),(=);,(lim=),( 210
1

+++Φ
→

trutrutruptrtru
p

  (7) 

3. The Exact Solution of NLS Equation 

with an External Potential 

In this study, we investigate the exact solutions of 

two-dimensional NLS equation with external potentials by 

using the HAM method. The generalized NLS equation we 

consider is 

0.=),|(| 2 uuFuiut +∆+                 (8) 

Here (?F  is a real function, and we assume 

0=(0)F .This equation describes nonlinear light 

propagation in a non-Kerr medium. ( , , )u x y t  corresponds 

to the complex-valued, slowly varying amplitude  in the 

xy  plane propagating in the t  direction, yyxx uuu +≡∆  

corresponds to diffraction. In this paper, ),|(| 2 uuF  

function will be taken in the following form: 

(a)If we take uyxVuuuuF d ),(|=|),|(| 22 +  the 

Nonlinear Schrödinger equation describe soliton 

propagating along the t  direction in optical medium with 

spatially Kerr-type nonlinearity.  

(b) If we take uyxVuuuuF d ),(|=|),|(| 42 + , the quintic 

nonlinear Schrödinger (QNLS)equation is obtained and 

),( yxVd  is an external potential .   

(c) If 
2 2

0
(| | , ) = / (1 ( , ) | | )

d
F u u E u V x y u+ +  the 

governing equation is NLS equation with saturable 

nonlinearity. Here 0E  is a constant. ),( yxVd  is the 

external potential. 

We will give the exact solutions of  Nonlinear 

Schrödinger equation with external potentials under the kerr, 

saturable and quintic nonlinearities respectively. 

3.1. Nonlinear Schrödinger Equation with Kerr type 

Nonlinearity 

We analyze two-dimensional nonlinear Schrödinger 

equation based on a type of non periodic modulation of 

linear refractive index in the transverse direction. We obtain 

an exact solution in explicit form for  (2 + 1)D nonlinear 

Schrödinger equation with the non periodic modulation [5]. 

0=||),()(
2

1 2 uuuyxVuuiu dyyxxt ++++    (9) 

with the initial condition  

)].(
2

[exp=,0),( 22 yx
k

yxu +−ξ         (10) 

We consider the non periodic modulation of the linear 

refractive index in the transverse direction under a parabolic 

and Gaussian distribution, i.e., 

)]([exp)(
2

=),( 2222 yxkyx
k

yxVd +−−+− ξ     (11) 

We apply HAM to the Eq.(9) with initial condition 

)](
2

[exp=,0),( 22 yx
k

yxu +−ξ  In order to solve Eq.(9), 

we construct the homotopic equation. If we substitute 

1=),( trH  into Eq.(2), then we obtain 

)]([=)]()()[(1 Φ−Φ− NphuLLp o         (12) 

where 
t

L
∂
Φ∂Φ =)(  and N  is the whole operator 

ΦΦ+Φ+Φ+Φ+ΦΦ 2||),()(
2

1
=)( yxViN dyyxxt and 0u  

is the zeroth order approximate function which we take 

)](
2

[exp=,0),(= 22
0 yx

k
yxuu +−ξ . If we substitute L , 

N ,and 0u  into the Eq.(12), then homotopic equation 

becomes 

2

( 1 ) ( )
= 2

( , ) | |

t x x yy

t

d

h
i h

i p

h V x y h

+ Φ + Φ + Φ +
Φ

Φ + Φ Φ

 
 
 
 

    (13) 

Substituting Eq.(5) into Eq.(13) and equating coefficients 

of p , we obtain 
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)],(
2

[exp=,0),(0,={: 22
0

00 yx
k

yxu
t

u
p +−

∂
∂ ξ  

2 2

1 0 0 01

2 2

2

0 0 0

: = ( 1)
2
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d

u u uu h
p i h

t t x y

hV x y u h u u

∂  ∂ ∂ ∂
+ + + + ∂ ∂ ∂ ∂ 
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2 2

2 2 1 1 1

12 2

2 2

0 1 1

: = ( 1) ( , )
2

(2 | | ),

d

o

u u u uh
p i h hV x y u

t t x y

h u u u u

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

+ +
 

2 2

3 3 2 2 2

22 2

2 2 2 2

0 2 1 0 1 0 0 2

: = ( 1) ( , )
2

(2 | | 2 | | ),

d

u u u uh
p i h hV x y u

t t x y

h u u u u u u u u

∂  ∂ ∂ ∂
+ + + + ∂ ∂ ∂ ∂ 

+ + + +
 

⋮  

with the initial conditions 0.=......=== 321 uuu  If we 

solve above equations for unknowns sui ' , we obtain 

)],(
2

[exp= 22
0 yx

k
u +−ξ  

)](
2

[exp= 22
1 yx

k
ihktu +−ξ  

)],(
2

[exp)
2

(= 22
2

2 yx
kt

hikthtihku +−++ξ  

3

2 2 2 2

3

2 2

= ( 1) ( 1)
6

exp[ ( )]
2

t
u hk i h t hk h t h k i x

k
x y

ξ  + − + − 
 

− +
 

⋮  

As a result, if we sum up the terms sui '  for 1= −h  and 

1=p , we can get the solution in Taylor from as 

2

2 2( )
( , ) = 1 ... exp[ ( )]

1! 2! 2

ikt ikt k
u x t x yξ − − − + + + + 

    (14) 

The closed-form solution is  

).(exp)](
2

[exp=),( 22 iktyx
k

txu −+−ξ      (15) 

3.2. Saturable-Nonlinear Schrödinger Equation 

The propagation of a polarized probe beam is governed by 

a generalized NLS equation with saturable nonlinearity. The 

model can be given as follows 

0=
||),(1
2

0

uyxV

uE
uuiu

d

yyxxt ++
−++    (16) 

with the initial condition )](
2

[exp=,0),( 22 yx
k

yxu +−ξ . 

Where ),( yx  are transverse coordinates, u is the 

slowly-varying amplitude of the probe beam, 0E  is a 

constant and dV  is a lattice intensity function as following 

)].([exp
)(

)(
=),( 22

222

222
0 yxk

yxk

yxkE
yxVd +−−

+
+− ξ   (17) 

we apply HAM to the Eq.(16) with initial condition 

)](
2

[exp=,0),( 22 yx
k

yxu +−ξ . In order to solve Eq.(16), 

we construct the homotopic equation. If we substitute 

1=),( trH  into Eq.(2), then we obtain 

)]([=)]()()[(1 Φ−Φ− NphuLLp o      (18) 

where 
t

L
∂
Φ∂Φ =)(  and N  is the whole operator  

)(
||),(1

=)(
2

0
yyxx

d

t
yxV

E
iN Φ+Φ−

Φ++
Φ+ΦΦ  

and 0u  is the zeroth order approximate function. If we 

substitute L , N ,and 0u  into the Eq.(12), then homotopic 

equation becomes 












Φ+Φ−

Φ++
Φ+Φ+Φ )(

||1
1)(=

2

0
yyxx

d

tt
V

E
hipi    (19) 

Substituting Eq.(5) into Eq.(19) and equating coefficients 

of p , we obtain 

)],(
2

[exp=,0),(0,={: 2200 yx
k
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t

u
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2 2

1 0 0 01
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0
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p i i h h

t t x y

E u h

V x y u
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+ + + ∂ ∂ ∂ ∂ 

−
+ +

 

2 2

2 2 1 1 1
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0 1 0 0 1 0 0 1

2
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V u u V u u
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2 2
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0 2 0 0 1 1 1 0 0 2 0 2

2
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2
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3

0 0

: = ( 1)

(2 )

(1 ) (1 )

( )
,

(1 )

d d

d

u u u u
p i i h h

t t x y

E u h E h u u u u u u u u u

V u u V u u

E u h u u u u

V u u

∂  ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

+ + +
−

+ + + +
+

+
+ +

 

⋮  

with the initial conditions 0.=......=== 321 uuu  If we 

solve above equations for unknowns sui ' , we obtain the 

following functions  

2 2

0

2 2

1

2 2 2 2 2

2

3 3 3

2 2 2 2

3

2 2

( , , ) = exp[ ( )],
2

= 2 exp[ ( )]
2

= 2[ ( 1) ] exp[ ( )],
2

4
= [ 4 ( 1) 2 ( 1) ]

3

exp[ ( )]
2

k
u x y t x y

k
u hkit x y

k
u h k t hk h it x y

ih k t
u h k t h ihkt h

k
x y

ξ

ξ

ξ

ξ

− +

− +

−− + + +

− − + + +

− +

⋮

  (20) 

As a result, if we sum up the terms sui '  for 1= −h  

and 1=p , we obtain the exact solution of the nonlinear 

Schrödinger equation under the saturable nonlinearity with 

an external potential as 

)](
2

[exp...
3!

)(2

2!

)(2

1!

2
1=...),(),(),(=),(

22
32

210 yx
kiktiktikt

txutxutxutxu +−











+−+−+++ ξ       (21) 

2 2( , ) = exp[ ( 4 )].
2

k
u x t x y itξ − + +    (22) 

3.3. The Quintic-Nonlinear Schrödinger Equation 

We obtain the exact solution of the nonlinear Schrödinger 

equation with quintic nonlinearity. The mathematical model 

can be given as  

0=||),()(
2

1 4 uuuyxVuuu dyyxxt ++++     (23) 

with the initial condition 

)].(
2

[exp=,0),( 22 yx
k

yxu +−
          (24) 

We consider the external potential as the non periodic 

modulation of the linear refractive index in the transverse 

direction which is a parabolic and Gaussian distribution, i.e., 

)](2[exp)(
2

=),( 2222
2

yxkyx
k

yxVd +−−+−
   (25) 

We apply HAM to the Eq.(23) with initial condition 

)](
2

[exp=,0),( 22 yx
k

yxu +−
 In order to solve Eq.(23), we 

construct the homotopic equation. If we substitute 

1=),( trH  into Eq.(2), then we obtain 

)]([=)]()()[(1 Φ−Φ− NphuLLp o         (26) 

where 
t

L
∂
Φ∂Φ =)(  and N  is the whole operator  

ΦΦ+Φ+Φ+Φ+ΦΦ 4||),()(
2

1
=)( yxViN dyyxxt  

and is the zeroth order approximate function which we take 

)](
2

[exp= 22
0 yx

k
u +−

. If we substitute L , N ,and 0u  

into the Eq.(12), then homotopic equation becomes 








 ΦΦ+Φ+Φ+Φ+Φ+Φ 4||),()(
2

1)(= hyxhV
h

hipi dyyxxtt (27) 

Substituting Eq.(5) into Eq.(27) and equating coefficients 

of p , we obtain 
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[exp=,0),(0,={: 2200 yx
k
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t

u
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∂
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+ +
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⋮  

with the initial conditions 0.=......=== 321 uuu  If we 

solve above equations for unknowns sui ' , we obtain 

)],(
2

[exp= 22
0 yx

k
u +−
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1 yx

k
ihktu +−

 

)],(
2

[exp1)](
2

[= 22
222

2 yx
k

hhkit
tkh
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3
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6

( 1 ) ] e x p [ ( ) ] ,
2

i h k t
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⋮  

With the same manipulating as we did above examples, 

summing up the termsq sui '  for 1= −h  and 1=p , we 

obtain the exact solution of the Nonlinear Schrödinger 

equation in the following form 

2 2( , ) = exp[ ( 2 )].
2

k
u x t x y ikt

− + +       (28) 

4. Linear and Nonlinear Stability of the 

Exact Solutions 

4.1. Linear Stability 

Now we address the critical question of linear stability of 

these exact solution under kerr, saturable and quintic 

nonlinearities. To obtain the whole spectrum of these 

solutions, we will use the Fourier collocation method ([20]). 

We consider NLS equation with general types of 

nonlinearities and potentials 

0=],|[| 2 xUFUiU t +∆+             (29) 

Here ),|(| 2 xUF  is a real-valued function. This equation 

admits solutions of the form 

tiexutxU µ)(=),(                 (30) 

where µ  is the propagation constant, and )(xu  is a 

general real-valued function. To study the spectrum of the 

exact solutions we assume that  [20] 

titt eexwxvexwxvxutxU µλλ ])]()([)]()([)([=),(
*** −+++ (31) 

where 1<<)(),( xwxv  . Inserting this solution given in 

Eq.( 24) to Eq. (22) and linearizing, we obtain the following 

linear-stability eigenvalue problem as 

















































+

−

w

v

w

v

L

L

λ=0

0

i                  (32) 

where −L  and +L  are defined as 

2

22

2

||
2),|(|=

),|(|=

u

F
uxuFL

xuFL

∂
∂++∆+−

+∆+−

+

−

µ

µ

      (33) 

Eigenvalues with positive real parts are unstable 

eigenvalues. The other eigenvalues are stable ( purely 

imaginary eigenvalues are often called internal modes). We 

checked the linear eigenvalue problem for these exact 

solutions obtained by the use of the homotopy analysis 

method. 

The linear spectrum of the exact solutions of nonlinear 

Shcrödinger equation for kerr and quintic nonlinearity under 

the parabolic and gaussian distribution are shown in Fig. 1. 

 

Figure 1. Linear-stability spectra of the exact solutions (15) (28) and (22) 

(with k= -1) in the generalized NLS equation under three different 

nonlinearities (a) Kerr nonlinearity (b) Quintic nonlinearity (c) Saturable 

nonlinearity.  

As it seen from this figure the spectrum of the exact 

solutions of NLS equation with kerr and quintic nonlinearity 

contains a pair of real eigenvalues. So these solutions are 

linearly unstable while the exact solution of NLS equation 

for saturable nonlinearity under the parabolic and gaussian 

distribution is linearly stable. 

4.2. Nonlinear Stability 

In order to study the nonlinear stability, we directly 

compute the (2+1) dimensional NLS equation with kerr, 

quintic and saturable nonlinearities over a long time, (finite 

difference method was used on derivatives xxu  and yyu , 

and fourth-order Runge-Kutta method to advance in t ) for 

periodic and gaussian distribution potentials. The initial 

conditions were taken to be an exact solutions with %1  

random noise in the amplitude and phase. First we consider 

the direct simulations of the exact solution of NLS equation 

with kerr nonlinearity. As can be seen from Figure. 2 the 

peak amplitude of the exact solution 
,

( ) = | |
x y

A t max u  

oscillate with t . This suggest that the exact solution 

obtained by HAM is nonlinearly stable. 



Applied and Computational Mathematics 2013; 2(6): 152-158 157 

 

 

Figure 2. (a) Peak amplitude 
,

( ) = | |
x y

A t max u  of the exact solution 

of NLS equation with kerr nonlinearity as a function of the propagation time. 

The initial condition is taken as the exact solution with 0.01 noise. in the 

amplitude and phase. (b) On the axis mode profile for exact solution for 

kerr nonlinearity along the diagonal axes with 0=t  and 20=t . 

The second case we plotted the maximum amplitude of 

the exact solutions for quintic and saturable nonlinearity. 

Figure 3 and Figure 4 show that the maximum amplitude for 

both cases oscillate with t . The exact solutions appear to be 

nonlinearly stable. 

 

Figure 3. (a) Peak amplitude 
,

( ) = | |
x y

A t max u  of the exact solution of 

NLS equation with quintic nonlinearity as a function of the propagation 
time. The initial condition is taken as the exact solution with 0.01 noise in 

the amplitude and phase. (b) On the axis mode profile for exact solution for 

kerr nonlinearity along the diagonal axes with 0=t  and 20=t . 

 

Figure 4. (a) Peak amplitude 
,

( ) = | |
x y

A t max u  of the exact solution of 

NLS equation with saturable nonlinearity as a function of the propagation 

time. The initial condition is taken as the exact solution with 0.01 noise in 
the amplitude and phase. (b) On the axis mode profile for exact solution for 

kerr nonlinearity along the diagonal axes with 0=t  and 20=t   

5. Conclusion 

In this paper, using different types of nonlinearities, we 

found the exact solutions of two-dimensional nonlinear 

Shrödinger equation with the parabolic and gaussian 

distribution by using Homotopy analysis method (HAM ). 

We also investigate the nonlinear and linear stabilities of the 

exact solutions. We show that all exact solutions for kerr, 

quintic and saturable nonlinearities are nonlinearly stable 

but for kerr and quintic nonlinearity the exact solutions are 

linearly unstable. Also we investigated the linear stability of 

the exact soliton for saturable nonlinearity. We found that 

this solution is linearly stable. 
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