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Abstract: Consistency of the Douglas – Rachford dimensional splitting scheme is proved for the sum of three nonlinear 

operators constituting an evolution equation. It is shown that the operators must be densely defined, maximal monotone and 

single valued on a real Hilbert space in order to satisfy conditions, under which the splitting algorithm can be applied. 

Numerical experiment conducted for a three-dimensional Stefan problem in permafrost soils suggests that the Douglas – 

Rachford scheme produces reasonable results, although the convergence rate remains unestablished. 
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1. Introduction 

Formulation of the splitting and alternating directions 

implicit methods (ADI methods) in late 1950-s – early 

1960-s [1 - 9] was followed by its rapid developments [10 - 

14] and applications in various fields ranging from partial 

differential equations (PDE) [15, 16] to complex 

optimization problems [17 – 19]. The reason for such a wide 

application of these methods is related with a possibility to 

capture different aspects of a studied system, which are 

reflected in a complicated PDE, solved by the splitting 

methods. The complexity of a particular PDE may be due 

to the presence of terms (operators) that are mathematically 

very different, making this PDE hard to analyze. In this 

case, splitting methods provide one with a possibility to 

split the equation into a set of sub-equations, where each 

sub-equation is of a type, for which simple and efficient 

methods are available. The main two ideas for splitting of 

PDEs are the following (see, e.g. [20]): 

1. Physical splitting (related to the underlying 

processes). 

2. Mathematical splitting (related to abstract matrices, 

found in the differential equations after spatial 

discretization). 

The overall numerical method is then formed by 

choosing an appropriate numerical scheme for each 

sub-equation of the initial PDE and combining the schemes 

together by operator splitting [21]. 

Following the classification proposed by Marchuk [11], 

the factorization and ADI methods, based on 

inhomogeneous approximation of auxiliary (intermediate) 

steps, will be called the splitting methods. Under an 

inhomogeneous finite difference scheme we imply a 

scheme, for which the coordinate shifts do not induce grid 

functions from the space, on which the difference operators 

of the scheme are defined (more details and formal notion 

of such schemes are developed in [22]). Thus, each 

intermediate step not necessarily approximates the original 

problem, but in the whole the approximation takes place. 

Indeed, the Douglas - Rachford splitting algorithm [6, 23], 

the study of which is presented in this paper, comprises 

three steps, each of which separately does not approximate 

the original problem:  �1 � �����1 � �����1 � ��	�
��� 
 ����� � �� ��	� � �1 � �����1 � �����1 � ��	��
�  (1) 

or, the same, 1 step: 
� 
 �1 � ����������� � �� � �	� � �1 � �����1 ������1 � ��	��
�       (2) 
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2 step: 
�� 
 �1 � �������1 � ����������� � �� � �	�� �1 � �����1 � �����1 � ��	��
� 

          (3) 

3 step: 
��� 
 �1 � ��	����1 � �������1 � ����������� � ��� �	� � �1 � �����1 � �����1� ��	��
� 

          (4) 

where �  is the iteration parameter, �����,�,	� are some 

operators and n is the iteration index. From (2) - (4) one 

can see that the intermediate quantities 
� and 
�� do 

not belong to the space of functions that approximate 

solution of the original problem, while 
� and 
��� are 

the consecutive iterations of 
 . To conclude this 

discussion of relation between ADI and splitting methods 

we note that in [24, 19] it was shown that the Douglas – 

Rachford splitting method for minimization of the sum of 

two monotone operators is a special case of proximal point 

algorithm.  

It is known that the algorithm (1) is absolutely stable if 

the operators �����,�,	� are linear [6, 23]. There has been 

made numerous attempts to generalize the Douglas - 

Rachford, Peaceman - Rachford and other splitting 

algorithms to the case of nonlinear problems [25 – 31]: in 

[31] a solution-set characterization is used for the 

estimation of convergence rate of Douglas – Rachford 

algorithm, applied to variational inequalities and 

minimization problem with the sum of two convex 

functions; in [27] the operator-theoretical approach is 

employed for the studies of convergence of Lie and 

Peaceman – Rachford splitting, applied to quasilinear 

parabolic problems with the sum of two nonlinear operators; 

in [32] the weak convergence of the Douglas – Rachford 

algorithm was proved for the minimization problem with 

the sum of two general maximal monotone operators in 

infinite dimensional spaces; in [33] weak convergence has 

been proved for an abstract family of projective splitting 

algorithms for sums of arbitrary numbers of maximal 

monotone operators (Propositions 3.2 and 4.2 in [33]), but 

no convergence rate has been established. It has also been 

demonstrated that the problem with the analysis of 

dimensional splitting algorithms for the solution of 

nonlinear differential equations (or equations with variable 

coefficients) is due to non-commutativity of operators [25]. 

Despite all these attempts, to the best of our knowledge 

there is no complete convergence analysis and convergence 

rate estimation for the problems, comprising the sum of 

three nonlinear operators available in the literature. 

In this paper we present the study of consistency of the 

algorithm (1) (in application to evolution equations) for the 

case when operators �����,�,	�  are non-linear. For this 

purpose we employ the results published in [17, 34, 35] and 

make some additional assumptions that are natural from the 

point of view of application of the algorithm (1) to Stefan 

problem in permafrost soils. 

The paper is organized as follows: next section contains 

the theoretical framework and the list of assumptions; in 

Section 3 the proof of consistency for the algorithm (1) in 

application to evolution equations is presented; Section 4 is 

dedicated to the application of algorithm (1) to Stefan 

problem in permafrost soils. Section 5 presents some 

numerical results and is followed by conclusions. 

2. Notation and Setup  

2.1. Theoretical Framework for the Consistency Studies  

Let us consider an evolution equation of the form: �����/�� � ����� 
 0,     (5) ��0� 
 ��, 0 � � � ∞ 

where H is a Hilbert space and �: ���� �  !  . 

From the theory of nonexpansive semigroups it is known 

that [36, 37 Corollary 31.1] 

Proposition 2.1: If the operator A is maximal accretive 

and � 
 ���� is the unique solution of Eq.(5), then ���� 
 "�����       (6) 

where �� # ���� and �"���� is a nonlinear nonexpansive 

semigroup on ����, which can be uniquely extended to a 

nonexpansive semigroup on ���� . The generator of �"���� on ���� is $�. 

Let us remind that the maximal accretive operator is 

defined as follows: 

Definition 2.1: Let �: ���� �  !   be an operator on 

the real Hilbert space H. Operator A is called maximal 

accretive if and only if: 

For any % & 0: �' � %��: ���� !   is injective and �' � %���� is nonexpansive on H. 

In our analysis we will make use of the following result 

[38]: 

Proposition 2.2: Let �: ���� �  !   be an operator 

on the real Hilbert space H. Then the following two 

properties of operator A are equivalent: 

(i) A is maximal accretive 

(ii) A is maximal monotone 

The maximal monotone operator is defined as follows: 

Definition 2.2: Let �: ���� �  !   be an operator on 

the real Hilbert space H provided with an inner product �, �. 

Operator A is called maximal monotone if and only if the 

following two conditions hold: 

(i) ��� $ �(, � $ (� ) 0 for any �, ( # ���� 

(ii) If �* $ �(, � $ (� ) 0  for any ( # ���� , 

then �� 
 *. 

At this point we are ready to formulate the main tool of 
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our further analysis of consistency [34 Corollary 4.3, 35 

Theorem 4.3]: 

Theorem 2.1: Let �: ���� �  !   be a maximal 

accretive densely defined operator and let �"���� be a 

semigroup generated by $�. Let �+�,�� be a family of 

contractions with the Lipschitz constant -�,� defined on 

a closed convex subset . 
 ���� �   for all , & 0.  

If  

(i) -�,� 
 1 � /�,� for , ! 0       (7) 

(ii) lim3!��' � 43 �' $ +�,�����5 
 �' � �����5 

 (8)  

for 65 # ���� 7 . and 6� & 0. 

Then, for 65 # ���� 7 ., the following result holds: lim�!�8 +�� 
 �/9���� ! "��� ��    (9) 

And the limit is uniform on bounded intervals of � # :0, �∞�. 

Proof of this theorem can be found in [34, 35]. 

Another important result that we will employ in our 

study is the following Lemma proved in [17]: 

Lemma 2.1: Let �: ���� �  !   be a maximal 

monotone operator. If for every � # ���� and �4 #   

there exists a limit lim4!���4 $ ��/� 
 ;,   (10) 

Then 

lim4!� <=��>�4?�@A4 
 B?<�;�     (11) 

where B?<�;� denotes the projection operator for vector y 

onto the range of A.  

The results presented above constitute the basis for the 

application of nonlinear semigroup theory to the 

consistency analysis of splitting schemes. In the next 

Subsection we will make some additional assumptions that 

are necessary for the specific case of dimensional splitting 

in the Douglas – Rachford scheme and in Section 3 we will 

use the Theorem 2.1 and Lemma 2.1 in order to study 

consistency of this algorithm. 

2.2. Finite Differences Formalism for the Quasilinear 

Heat Equation 

The equation describing heat transfer in a system with 

phase transition has the following form: 

.��� C<CD 
 EF(�G���HIJE����    (12) 

where � 
 ��5, ;, K, ��  is the unknown function 

(temperature: ���L� # M�� �NO�  at every fixed �L , M�� �NO� 

being a real linear space of positive valued functions), .��� is the heat capacity, G��� is thermal conductivity. 

By Ω we denote a bounded, open subset of an Euclidian 

space Q	  with boundary ΩR , the closure of Ω  being 

denoted by NO . 

Following the classification given in [39], we call (12) a 

quasilinear heat equation. The initial and boundary 

conditions are taken to be: ��5, ;, K, � 
 0� 
 S��5, ;, K, �|�5, ;, K� # Ω  (13) ��5, ;, K, �� 
 S�5, ;, K, ��|�5, ;, K� # ΩR , � # U� (14) 

We consider the cases when .��� ) % & 0  and G��� ) V & 0, thus (12) is uniformly parabolic and has a 

unique solution to the initial-boundary-value problem 

(13)--(14) [40]. 

For the formulation of finite difference scheme we 

introduce the following discretization procedure. Let the 

vector W 
 �WX, WY , WZ� # Q	  have positive coordinates 

and [\ be the set of all points �F ] WX , ^ ] WY , G ] WZ� # Q	, 

the indices F, ^, G  being integers. Two points 5� 
 �F� ]WX , ^� ] WY , G� ] WZ�  and 5� 
 �F� ] WX, ^� ] WY , G� ] WZ� 

belonging to [\  are called neighbors if _�F� $ F��� ] WX� � �^� $ ^��� ] WY� � �G� $ G��� ] WZ� 
WX,Y,Z . The points 5 # [\ 7 Ω , all of whose neighbors 

belong to Ὼ, are denoted by Ω\. 

Following [41], we denote the points 5 # [\\Ω\ with 

the property that at least one neighbor belongs to Ω\ by ΩR \ . Thus, the full spatial mesh is Ὼ\ 
 Ω\ b ΩR \ ,   ΩR \ 

being the set of boundary points (outside of Ω\). For the 

following we assume that Ὼ\  is a homogeneous (i.e., WX , WY , WZ are constants) cubic domain. 

Let d 
 :0, ∞� and d� 
 d\�0�. Then the time mesh is 

defined as follows: de 
 �� # d, � 
 f ] g, 9 
 0,1, … �  (15) 

The approximate solutions of (12), 
���, are defined on de and take their values in a real finite-dimensional linear 

space M�Ὼ\� , the dimension of which is equal to the 

number of points in Ὼ\ . A function 
��� # M�Ὼ\�  is 

called admissible if 
�� 
 0� 
 S��5, ;, K�  and 
 
 ��5, ;, K, �� on ΩR \ i de�. As was pointed out in [41], ��5, ;, K, �� is, in general, not known in ΩR \ i de� and thus 

the following assumption should be made: there exists a null 

sequence (that converges to zero) �WX,Y,Zj � of mesh spacings 

such that Ω\k l Ω  and WX,Y,Z  always belongs to the 

sequence �WX,Y,Zj � . This assumption guarantees that an 

admissible function is uniquely specified in �[\ ide��\�Ω\ i de�� in terms of the initial and boundary values 

of ��5, ;, K, ��. 

For every 
��� # M�Ὼ\�  we define the first-order 

forward and backward difference operators: 

mWn ] �n�
��� 
 
�o����� $ 
�o���Wn ] �n�
��� 
 
�o����� $ 
�o���p   (16) 

where q 
 �5, ;, K� , 2 s Fn s �EFfn�Ὼ\� $ 1� , EFfn�Ὼ\�  being the number of points in Ὼ\  along q 

-direction in the Cartesian coordinates. For any suitably 

defined function 
��� # M�Ὼ\� we set 
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G�ot�/�,� 
 G�uvotA�uvo� �     (17) 

Thus, G�ot�/�,�  are the values of G�
����  at the 

fictitious intermediate nodes of the mesh Ω\  at � 
 g ]9 # de, 
��� # M�Ὼ\�. 

From the Eqs. (16)--(17) one obtains: 

$��o� wG��
� ] ��o� 
x 
 �\vo(Λ�o,�� +Λ�o,�� )U,  (18) 

where 

zΛ�o,�� 
 
 G�o��/�,� ] uvo@A�uvo\voΛ�o,�� 
 
 G�o��/�,� ] uvo{A�uvo\vo
p    (19) 

and G��
�  corresponds the value of G�
����  at � 
 g ] 9 # de , 
��� # M�Ὼ\�, Fn  and q being defined as q 
 �5, ;, K�; 1 s Fn s EFfn�Ὼ\�. 

We also provide M�Ὼ\�  with the |� -inner product �
, }� and induced norm ~
~ 
 �
, 
��/� on Ὼ\: �
, }� 
 WX ] WY ] WZ ∑ 
���}����#��    (20) 

The maximum norm is defined as following: ~
~8 
 max �
�       (21) 

We define on Ὼ\ a modified A-inner product �
, }��,? 

and induced norm  ~
~�,? 
 �
, 
��,?�/�
 

by �
, }��,? 
 WX ] WY ] WZ ∑ ∑ 
�����,n}����#��n��X,Y,Z�  

         (22) ��,nw}���x 
 $.����}���� ] �n��G��}�����n�}���� 

          (23) 

where .����}���� and G��}����  correspond the values 

of .���(�5, ;, K, ���  and G�(�5, ;, K, ���  at � 
�5, ;, K� # [\, � 
 g ] 9 # de , (��� # M�Ὼ�  respectively. 

Note that the so defined operator ��,n implies that it is 

generally not true that ��,n: M�Ὼ\� ! M�Ὼ\�. 

Now we can write the following Douglas – Rachford 

finite differences scheme for the heat equation (see detailed 

discussion of this scheme in [42]): 

w1 � g ] ��,Xxw1 � g ] ��,Yxw1 � g ] ��,Zx
e� 


 ∑ ��,n�
��n         (24) 

where ��,n  are given by (23), q 
 �5, ;, K� , 
e� 
�
��� $ 
��/g , 
� 
 
���  and 
��� 
 
�� � g�  at � 
 9 ] g # de, 
��� # M�Ὼ\�. 

Application of the scheme (24) to the Stefan problem 

will be studied in Section 4.  

To complete this Section we present the following two 

assumptions that are necessary to guarantee computational 

stability of this scheme [42]  

Assumption 2.1: In the scheme (24) the operators ��,n  

are acting on the vectors 
��� in the following way: ��,n�
���� 
 $.����
�� ] �n��G��
���n�
���� (25) 

This assumption leads to consideration of a linear 

finite-difference scheme of type (24) for the heat equation 

with variable coefficients .� and G�, the forms of which 

depend on the temperature field 
� 
 
��� calculated at 

the previous time level. This kind of assumption is 

commonly used when considering nonlinear time 

dependent problems (e.g., [26]). 

Let us rewrite (25) in the following equivalent form: ��,nw}���x 
 ���,nw}���x � ��,n�}����  (26) 

where 

z���,nw}���x 
 ��vo,�{ �o{��o@���������,nw}���x 
 �vo,�@ ��o{��o@�������
p,    (27) 

� ��o,�� 
 �G�o�A�,� � G�o�A�,��/2��o,�� 
 �G�o�A�,� $ G�o�A�,��/�2 ] Wn�p.   (28) 

Assumption 2.2: The functions .��: M�Ὼ\� ! ℓ8�Ὼ\�, ��: M�Ὼ\� ! ℓ8�Ὼ\� and ��: M�Ὼ\� ! ℓ8�Ὼ\� (defined 

by (17) and (28)) are mapping the elements 
���� #M�Ὼ\� into a sequence space ℓ8�Ὼ\�, the elements of 

which ( ������, ������, .������ # ℓ8�Ὼ\� ) satisfy the 

following relations: 

� .��w
����x 
 .������|�n��.�������| s �� ] .������|�n��.�������| s �� ] .������p    (29) 

��
���w
����x 
 ������ 
 �vo{A�,������vo@A�,����

�|�n���������| s �� ] ������|�n���������| s �� ] ������
p  (30) 

��
���w
����x 
 ������ 
 �vo{A�,������vo@A�,����

�|�n���������| s �	 ] ������|�n���������| s �	 ] ������
p  (31) 

where the operators �n�, �n� are defined similarly to (16); ��, ��, �	  are real positive constants. ℓ8�Ὼ\�  is the 

Banach space with the maximum norm. 

3. Consistency of the  

Douglas – Rachford Splitting Scheme 

In order to proceed further and consider the case where 

the operator A in (5) is the sum of three nonlinear operators, 
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� 
 �� � �� � �	   (32) 

we have to make the following assumptions. 

Assumption 3.1: The operators �����,�,	�: �������,�,	�� �  !     (33) 

and � 
 �� � �� � �	 

are single valued, densely defined and maximal monotone 

on a Hilbert space H. 

Assumption 3.2: The range of ' $ ���� � �� � �	� is 

dense in H for all � & 0. 

These two assumptions lead to the following important 

result: 

Lemma 3.1: If Assumptions 3.1 and 3.2 are valid, then HIJ�W��� � �� � �	�OOOOOOOOOOOOOOOOOOOOOOOOOOOO 
 HIJ�W��� 

The proof of this Lemma is presented in [27]. 

Now we are ready for the formulation of the main 

Theorem of consistency analysis for the Douglas – 

Rachford scheme. 

Theorem 3.1: Let the Assumption 3.1 and Assumption 

3.2 hold. Then, the family of contractions +��� 
 �?�4 �?�4 �?A4 w���� � �� � �	�x � '  (34) 

defined on a closed convex subset . 
 ���� �   for all � & 0 with �?v��A,�,��4 
 �' � ������,�,	����
,    (35) 

satisfies the conditions (i) and (ii) of the Theorem 2.1 and – � 
 $��� � �� � �	�  generates a semigroup �"���� 

such that ���� 
 "����� and  

lim�!�8 +�� 
 �/9���� ! "����� 

holds for the evolution equation (5). 

Proof: Satisfaction of the first condition of the Theorem 

2.1 is obvious when taking the limit lim4!� +���.  

For the proof of satisfaction of the second condition of 

the Theorem 2.1 let us consider the following quantity: 1� �
4 $ +���
4� 
 1� ��?�4 �?�4 �?A4 �w�?A4 x�� � w�?�4 x��
 

�w�?�4 x�� $ 3�
4�      (36) 

Note that in general case when the operators �����,�,	� 
are nonlinear, �?v4 , ��?v4 ��� and �?�4  do not commute with 

each other. At the same time, if �����,�,	� are single valued, 

one has the following identity:  

w' � ������,�,	�x�?v��A,�,��4 
 '     (37) 

Thus, we have for (36): 

1� �
4 $ +���
4� 
 1� ��?�4 �?�4 � �?�4 �?A4 � �?�4 �?A4  

$3�?�4 �?�4 �?A4 � �?�4 �?�4 ��?A4 , w�?�4 x��� � 

��?�4 ��?�4 , w�?�4 x��� �?A4 � �?�4 �?�4 :�?A4 , w�?�4 x����
4 (38) 

where  

 �?v4 , ¡�?�4 ¢t�£ 
 �?v4 ��?�4 �t� $ ��?�4 �t��?v4    (39) 

Proceeding in the same manner we obtain the following 

expression: 

1� �
4 $ +���
4� 
 1� ��?�4 �?A4 w
4 $ �?�4 
4x � 

�?�4 �?A4 w
4 $ �?�4 
4x � 

�?�4 �?�4 w
4 $ �?A4 
4x � 

�?�4 ¤�?A4 , �?�4 ¥
4 � �?�4 �?�4 ��?A4 , w�?�4 x��� 
4 � 

�?�4 ��?�4 , w�?�4 x��� �?A4 
4 � 

�?�4 �?�4 ��?A4 , w�?�4 x��� 
4 � 

�?�4 ¤�?A4 , �?�4 ¥
4 � :�?�4 , �?�4 ��?A4 
4.    (40) 

Taking the limit at � ! 0 and applying Lemma 2.1 

under the condition  

lim�!8 
4�D/� 
 ���� 

we obtain: 

lim4!� �4 �
4 $ +���
4� 
 B?A<�0� � B?�<�0� � B?�<�0� 

          (41) 

Thus, the operators (34) satisfy the conditions (i) and (ii) 

of the Theorem 2.1. Assumption 3.1 and Assumption 3.2 

together with the Proposition 2.2 lead to the conclusion that 

operators  �����,�,	�: �������,�,	�� �  !   

and � 
 �� � �� � �	  are maximal accretive. Finally, 

Proposition 2.1 leads to the conclusion that $� 
 $��� ��� � �	�  generates a semigroup �"����  such that ���� 
 "����� and  

lim�!�8 +�� 
 �/9���� ! "����� 

holds for the evolution equation (5). The Proof is 
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completed. 

Corollary 3.1: The algorithm (1) provides a consistent 

approximation for the evolution equation (5).  

Proof: The statement becomes obvious when the 

algorithm (1) is put in the form: 
��� 
 +���
�. 

4. Application to Stefan Problem in 

Permafrost Soils 

4.1. Stefan problem in permafrost soils 

Following [42], we introduce some additional notations 

and notions that are necessary for the study of Stefan 

problem in permafrost soils. 

Basing on results of [43 - 45], we formulate the model 

for the Stefan problem without explicitly invoking the 

front-tracking condition. This approach is justified by the 

observations that in case of explicit front-tracking models 

applied to Stefan problem in salted permafrost soils, there 

appears an overcooled region (frozen fringe zone) [46, 47] 

(the analysis of this zone and related frost heave and 

cryogenic suction processes [48, 49] are beyond the scope 

of the present work). Thus, we take into account the phase 

transition by introducing effective heat capacity .¦LL���, 

which incorporates the latent heat per unit mass §�: 

�.¦LL��� 
 .���� $ �1 $ ¨���� ] ©ª ] §� «ª�<���«<.���� 
 .D\ � �.L $ .D\� ] ¨��� p, (42) 

¨��� 
 �1 $ ���¬]�­®��<� , � s d�\0, � & d�\ p   (43) 

where .D\  and .L  are the values of volumetric heat 

capacities of the soil in thawed and frozen phases 

respectively, ¨��� is the fraction of frozen water, " is 

the smoothing parameter, d�\  is the phase transition 

temperature, ©ª  is the density of water. The thermal 

conductivity is taken to be G��� 
 GD\ � �GL $ GD\� ] ¨���    (44) 

where GD\ and GL are the values of thermal conductivities 

in thawed and frozen phases respectively. 

4.2. Consistent Approximation for the Quasilinear Heat 

Equation 

In Section 3 we have shown that the algorithm (1) can be 

used for a consistent approximation of evolution equation 

comprising the sum of three nonlinear operators. Let us 

now show that the scheme (24) provides a consistent 

approximation for the quasilinear heat equation (12).  

Proposition 4.1: Let the Assumption 2.1 hold and let .����}����  and G��}����  correspond the values of .���(�5, ;, K, ���  and G�(�5, ;, K, ���  at � 
 �5, ;, K� #

[\ , � 
 g ] 9 # de , (��� # M�Ὼ�  respectively. If .���(� 
 .¦LL�� �(� (in accordance with (42) - (43)) and G�(� is defined by (43) - (44), then the scheme (24): 

w1 � g��,Xxw1 � g��,Yxw1 � g��,Zx
e� 
 ¯ ��,n�
��n  

gives a consistent approximation for equation (12): 

.��� C<CD 
 EF(�G���HIJE����. 

Proof: The scheme (24) takes the form of the algorithm 

(1) if we put g 
 �  and ��,���X,Y,Z� 
 ��,����,�,	� . 

According to the Theorem 3.1 and Corollary 3.1, algorithm 

(1) provides a consistent approximation for the evolution 

equation of type (5) if all the operators  �F
�1,2,3�: ���F
�1,2,3�� �  !   

and  � 
 �� � �� � �	 

are  

(i) densely defined,  

(ii) single valued,  

(iii) maximal monotone on a Hilbert space H.  

The first property comes from the definition of linear 

space M�Ω\� , given in Subsection 2.2. Indeed, �w�����,�,	�x 
 M�Ω\� and  
 M�Ω\�. 

The second and third properties come from the definition 

of .����}����, G��}���� and from the fact that all the 

components of an admissible function 
��� # M�Ω\� are 

positive (see Subsection 2.2).  

Thus, the scheme (24) satisfies the consistency property 

(9). Proof is completed. 

In [42] the sufficient criterion for the computational 

stability of the algorithm (1) has been obtained. Below we 

present without proof the formulation of the main theorem 

for the analysis of computational stability of algorithm (1) 

(the proof can be found in [42]): 

Theorem 4.1: Let the operators ��,n (defined by (25)) 

satisfy the following condition for any 9 # de  �1 $ �° ]±�� ∑ ����,n s ∑ ��,nn s �1 � �° ] ±�� ∑ ����,nnn , 

   (45) 

where ±� 
 ~
� $ 
���~8, �° & 0 is a constant. 

Then the relation: w1 � g��,Xxw1 � g��,Yxw1 � g��,Zx ) e��² ∑ ��,nn , (46) 

(with 9  from (15), © ) 1 ) is sufficient for the 

following estimate to hold: �∑ ��,n
���, 
���n � s ©��1 � �°±���∑ ����,n
�, 
�n �,

    (47) 
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where 
�, 
��� # M�Ὼ\� are the solutions of Eq.(24). 

Application of this theorem to the scheme (24) leads to 

the following stability criterion [42]: 

e\o� s ²��² ³´µ ���{�³¶· ���� � ³´µ ����³¶· ���{��� ] ��,    (48) 

where �� is a constant. The criterion (48) is sufficient for 

relation (47) to hold, which reflects the notion of 

computational stability. 

Thus, for the linearized finite differences scheme (24) we 

have proved the consistency and the stability criterion is 

obtained in [42]. With these results we can proceed further 

and analyze the numerical experiments. 

 

Figure 1. Rectangular parallelepiped with the mesh used in numerical 

experiment. 

5. Numerical Experiment 

Let us consider a rectangular parallelepiped with 

dimensions  5:f� i 5:f� i 10:f� 
and following initial and boundary conditions (see Fig. 

1): dD¹� 
 275.15:�� d¼¹DD¹½ 
 271.15 :�� d���D 
 �� 
 271.15 :�� 
On the side edges of this parallelepiped zero thermal 

fluxes are posed. 

Let us suppose that the specific heat and thermal 

conductivity of material in this parallelepiped are given by 

(42) – (44) with the following values of constants: .D\ 
 1.89 :-�/�f	���, .L 
 1.74 :-�/�f	���, GD\ 
 0.7 :Á/�f���, GL 
 0.75 :Á/�f���,  d�\ 
 273.15 :��,  " 
 10:����,  

§� 
 334 :G�/GH�,  ©ª 
 1000 :GH/f	� 
Let us employ a homogeneous mesh with Δ5 
 Δy 
Δz 
 0.1 :m�  and the following number of nodes: 51 i 51 i 100. Using stability criterion (48) we obtain the 

values g 
 1160 :Æ� for the maximal time step and 744 

for the minimal number of iterations. 

In Fig. 2 the calculation results are presented for the time 

period of 10 days. Every contour plot in Fig. 2 presents a 

temperature field in the plane of parallelepiped with the 

coordinate x = 7 [m].  

 

Figure 2. Contour plots of the temperature field at the planes x = 7 [m] 

obtained with the scheme (24) at different time moments. 

One can observe a slight shift of the freezing front into 

the depth of soil. In order to demonstrate the change better, 

we plot the dependence of temperature on the coordinate in 

Fig. 3. 

In Fig. 3 the same results as in Fig. 2 are presented in the 

form of temperature change with the depth along the line 

with coordinates x = 7 [m], y = 13.6 [m]. 

One can observe the phase transition point and different 

behavior of temperature field below and above that point. 

This is in agreement with Eq. (42) – (44) and the general 

expectations for the results of solution of a Stefan problem. 

 

Figure 3. The dependence of temperature on the vertical coordinate (depth) 

at different time moments. 
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6. Conclusions 

We have shown that the Douglas – Rachford splitting 

algorithm (1) can be employed for a consistent 

approximation of evolution equation of type (5) (Theorem 

3.1 and Corollary 3.1), provided the operators �����,�,	�: �������,�,	�� �  !   

and  � 
 �� � �� � �	 

are single valued, densely defined and maximal monotone 

in a Hilbert space H.  

We suggest that the finite differences scheme (24) gives 

a consistent approximation for the heat equation (12) and 

can be used for the study of Stefan problems (Proposition 

4.1). The conducted numerical experiment (with the 

computational stability criterion taken from [42]) provides 

evidence that the Douglas – Rachford dimensional splitting 

algorithm can be used for the studies of heat transfer in 

permafrost soils (we argue that all other experiments (with 

different parameters) were also successful). Although the 

numerical experiments conducted with the stability 

criterion (48) appear to be successful, we note that the 

convergence rate has not yet been established for the 

scheme (24) and this presents an open problem. 
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