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Abstract: In this paper, we extend the work of Kalita et al. [11] to solve the steady 3D convection-diffusion equation 

with variable coefficients on non-uniform grid. The approach is based on the use of Taylor series expansion, up to the 

fourth order terms, to approximate the derivatives appearing in the 3D convection diffusion equation. Then the original 

convection-diffusion equation is used again to replace the resulting higher order derivative terms. This leads to a higher 

order scheme on a compact stencil (HOC) of nineteen points. Effectiveness of this method is seen from the fact that it can 

handle the singularity perturbed problems by employing a flexible discretized grid that can be adapted to the singularity in 

the domain. Four difficult test cases are chosen to demonstrate the accuracy of the present scheme. Numerical results show 

that the fourth order accuracy is achieved even though the Reynolds number (Re) is high.  

Keywords: 3D Convection–Diffusion Equation, Variable Coefficient, Fourth Order Compact Scheme,  
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1. Introduction 

We are concerned with numerical solution methods for 

solving convection-diffusion equation as it plays an 

important role in computational fluid dynamics (CFD). In 

the last two decades, a variety of specialized techniques 

were developed based on high order compact (HOC) finite 

difference (FD) schemes, which are computationally 

efficient. Several authors developed a number of fourth-

order compact (4OC) finite difference schemes for 

convection diffusion equations on uniform grids for two 

dimensional space [1–3] and three dimensional space [4–

7].These schemes have good numerical stability and 

provide high accuracy approximations for smooth problems. 

However, for singularly perturbed problems, if uniform 

grids are employed, the grids have to be refined over all 

computational domains. That leads to expensive and 

wasteful computations. Hence a non-uniform grid 

discretization is used to solve these problems by making 

grid points concentrate in the regions of singularity. One 

practice of non-uniform grid discretization is achieved with 

different mesh size in x-, y- and z-directions however the 

grid is still uniform in each of these directions. Using this 

approach, Ge [8] solved the 3D Poisson equation and Ma 

and Ge [9] solved 3D convection diffusion equation. 

Another practice of non-uniform grid discretization is space 

transformation. Ge and Zhang [10] solved singularly 

perturbed problems by discretizing the computational 

domain on a non-uniform grid to resolve the boundary 

layers, and then a grid transformation technique is used to 

map the non-uniform grid to a uniform one. The solution 

procedure of this method is complicated, expensive and 

sometimes error-prone. 

In a departure from these two practices, a 

transformation-free HOC finite difference solution 

procedure was proposed for the steady 2D convection 

diffusion equation on non-uniform grid by Kalita et al. [11]. 

Ge and Cao [12] developed a multigrid method based on 

[11] to solve the 2D convection diffusion equation. 

Recently, Ge et al. [13] proposed a multigrid method for 

solving the 3D Poisson equation, which is a convection-

diffusion equation with zero convection and constant 

diffusion coefficients. 

This paper extends the work of Kalita et al. [11] to solve 

3D convection diffusion equation with variable coefficients 

on a cubic non-uniform grid. Our approach is based on the 

use of Taylor series expansion, up to the fourth order terms, 

at a particular point with arbitrary mesh sizes in each of the 

three directions to approximate the derivatives appearing in 

the 3D convection diffusion equation. The original 
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convection diffusion equation is then used again to replace 

the resulting higher order derivative terms. This leads to a 

higher order scheme on a compact stencil of nineteen 

points. The present scheme makes it possible to use 

whatever non-uniform pattern of spacing one chooses in 

either direction. We introduce an algebraic multigrid solver 

for the first time, to the best of our knowledge, as an 

attractive tool for solving the 3D convection diffusion 

problem on non-uniform grids with transformation-free 

HOC scheme. 

The paper is organized in five sections. Section 2 

presents the basic formulations and derivation of the 

proposed HOC scheme for variable convection coefficient 

case. Section 3 describes the Algebraic Multi-Grid (AMG) 

method. The numerical results for four boundary layers test 

cases are presented in Section 4. Finally, Section 5 contains 

the conclusions.  

2. Basic formulations and numerical 

procedure 

Consider the 3D convection diffusion equation in the 

form 

� ����
��� � ���

��� � ���
�	�
 � ��
, �, �� ��

�� � ��
, �, �� ��
�� � ��
, �, �� ��

�	 � ��
, �, ��         in Ω  (1)

 

with proper Dirichlet boundary conditions on ∂Ω. Here the 

coefficients  p, q , r and forcing function f, as well as the 

unknown function u are sufficiently smooth functions, and 

have the required continuous partial derivatives. Ω is a 

cubic region in ��  defined by a! " x " a$ , b! " y " b$ , 

 c! " z " c$. 

The discretization is carried out on a non-uniform 3D 

grid. The intervals [a!,a$], [b!,b$] and [ c!,c$] are divided 

into sub-intervals by the 

points  a! � x),  x!,  x$, … , x+,!,  x+ � a$ ,   b! �
y),  y!,  y$, … , y-,!,  y- � b$ 

and  c! � z),  z!,  z$, … , z.,!,  z. � c$. In the x-direction, 

the forward and backward step lengths are respectively 

given by x/ � x01! � x0  ,  x2 � x0 � x0,! , 1 " i " m � 1 

and in the y- and z-directions,   y/, y2, z/, z2  can be defined 

similarly.  

For a function u�x, y, z�  assumed smooth in the given 

domain, Taylor series expansion at point �i � 1, j, k� (Fig. 1) 

gives: 
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Similarly at  �8 � 1, 9, :� 
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From Eqs (2) and (3), we have 
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Figure 1. Non-uniform HOC stencil 

In the 
-direction, the first- and second-order central difference operators are defined by 

X�7;<= � �NOP,Q,R,�NSP,Q,R
�A1�M

 and  X�$ 7;<= � $
�A1�M

V�NOP,Q,R
�A

� �NSP,Q,R
�M

� � !
�A

� !
�M

�7;,<,=W 

With these notations, (5) becomes 

?���
���@;<= � X�$ 7;<= � !

� I
> � 
LK ?�C�
��C@;<= � !

!$ I
>$ � 
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From Eqs (4) and (6), the first derivative may be approximated as 

?��
��@;<= � X�7;<= � !

$ I
> � 
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J  ?�C�
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Similar expressions can be derived for the � � and 

� �derivatives 

Now, we proceed to derive the HOC scheme for the 3D 

convection diffusion equation on non-uniform grids.  

In view of Eqs (6) and (7), Eq. (1) may be approximated 

at the point �i, j, k� as 

Y�X�$ � X�$ � X	$ � �Z?X� � 0.5I
> � 
LKX�$ ?̂ � �Z?X� � 0.5I�> � �LKX�$ ?̂ � �Z?X	 � 0.5I�> � �LKX	$ ?̂_7;<= � `;<= �
�;<=  

(8)

where `;<= is given by 

`;<= � a!
�C�
��C � b!

�C�
��C � c!

�C�
�	C � a$

�D�
��D � b$

�D�
��D � c$
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U  

(9)

with d!, d$ and d� being the leading truncation error 

terms ,where d! � ,!
J)

?�F�
��F@;<= , d$ � ,!

J)
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 c! � !
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$E Z?2I�>$ � �L$ � �>�LK �
��>�LI�> � �LK ?̂  
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It is important to note that, if τ0g.  in Eq.(9) is 

approximated by the first six terms while neglecting the 

remaining terms then its truncation error is at least third 

order if the grid is nonuniform but fourth order for uniform 

grids. 

2.1. Derivation of HOC 

The third- and fourth-order derivatives of u  in τ0g. (Eq. 

(9)) are derived by differentiating the original Eq. (1) with 

respect to x, y  and z.  Using these derivatives, (9) can be 

written as 

`;<= � �a!� � a$�$ � 2a$
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(10)

From Eqs (8) and (10), we have the following HOC scheme on non-uniform grids for Eq. (1)  

o�p89:X�$ � q89:X�$ � r89:X	$ � s;<=  X� � t;<=  X� � u;<=  X	 � v89:  X�X� � w89: X�X	 � x89:  X�X	 � a;<= X�X�$ � c;<=X�$ X� �
y;<=  X�X	$ � z;<=X�$ X	 � H;<=  X�X	$ � {;<=X�$ X	 � |;<=X�$X�$ � };<=X�$X	$ �  ~;<=X�$X	$� 7;<= � �;<=  

(11)

where the coefficients p;<= , q;<= , …, ~;<= are given by 

p;<= � 1 � a2I2 �
 � �2K � a1� � 0.5I
� � 
�K�  

q;<= � 1 � b2 �2 �� � �2
 � b1� � 0.5 ��� � ��
 �  

r;<= � 1 � c2�2 �� � �2� � c1� � 0.5I�� � ��K�  

s;<= � � � a! �� � b! �� � c! �	 � a$ �� �� �  ���� � b$��  �� �   ���� � c$��  �	 �  �		�  

t;<= � � � a! �� � b! �� � c! �	 � a$ �� �� �  ���� � b$��  �� �   ���� � c$��  �	 �  �		�  

u;<= � � � a! �� � b! �� � c! �	 � a$ �� �� �  ���� � b$��  �� �  ���� � c$��  �	 �  �		�  
v;<= � a1� � b1� � a2 ��� �  2 �
� � b2��� �  2  ���  

w;<= � a1� � c1� � a2 ��� �  2 �
� � c2��� �  2  ���  

y;<= � a! � ��a$ � c$�, z;<= � c! � ��c$ � a$�  

H;<= � b! � ��b$ � c$�, {;<= � c! � ��c$�b$�  

|;<= � a$ � b$, };<= � a$ � c$, ~;<= � b$ � c$  

And  

(12)

�;<= � � � �a! � a$���� � �b! � b$���� � �c! � c$���	 � a$��� � b$��� � c$�		    (13)

The expressions for τ0g. in Eq. (10) clearly indicate that 

the local order of accuracy of the scheme is four or three 

depending upon the grid spacing. The order of the 

truncation error is four on uniform grids (when x/  � x2 , 

y/  � y2 and z/  � z2 ) and at least three when the grid 

spacing is non-uniform (when x/ � x2, y/ � y2 or z/ � z2). 

In system of Eqs (12) and Eq. (13), we can use either exact 

derivatives or second order finite difference for the 

convection coefficients and the source term without 

reducing the order of approximation.  

Substituting the finite difference formulas (see Appendix 

A) in Eq.(11) in view of the node numbering shown in 

Fig.(1), the 19 point high-order compact (HOC) scheme 
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using non-uniform grids for the 3D convection diffusion 

equation (1) can be derived as follows 

� ��7� � �;<=
!�

��)
 (14)

The coefficients α��l � 0,1,2, … , 18�   are given as:
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	M

� 2 �NQR
�A

� 4 �NQR
�A	M

U 

�!� � !
E�� �w89: � 2 �NQR

	M
� 2 �NQR

�M
� 4 �NQR

�M	M

 , �!� � !

E=� �x89: � 2 �NQR
	M

� 2 �NQR
�M

� 4 �NQR
�M	M


  

(15)

and �;<= is given by Eq.(13). 

The overall matrix and the source vector corresponding 

to the finite difference Eq. (14) are constructed using 

assembly process. The coefficients from α) to α!� and F0g., 

are computed for all grid points according to the nodal 

stencil scheme shown in Fig. (1). Then after boundary 

conditions are incorporated, we obtain the system of linear 

equations  Au � b. 

3. Algebraic Multigrid (AMG) 

The solution of the system of linear equations arising 

from the HOC scheme of 3D problems tends to be 

computationally intensive because it requires much more 

memory space and CPU time to obtain solutions with the 

desired accuracy. So, iterative solution methods are 

considered as the best choice rather than the direct methods 

in such situations. Multigrid methods (MG) [14–17] are 

among the most efficient iterative algorithms for solving 

linear systems associated with partial differential equations. 

The basic idea of MG is to damp errors by utilizing 

multiple resolutions in an iterative scheme. Oscillatory 

components of the error are reduced through a smoothing 

procedure on a fine grid, while the smooth components are 

tackled using an auxiliary lower-resolution version of the 

problem (coarse grid). Two types of multigrid approaches 

may be distinguished: geometric multigrid (GMG) and 

algebraic multigrid (AMG) [18]. However, for convection-

dominated problems, choice of the smoothing procedure 

and inter-grid operators are nontrivial for GMG method. 

Since a standard relaxation smoother may fail to achieve 

the optimal grid-independent convergence rate for solving 

convection diffusion equations with a high Reynolds 

number, the plane relaxation smoother  or semi coarsening 

can be implemented to achieve better grid 

independency[1,6]. This requires special treatments of 

transfer operators and data structure.  

On the other hand, for AMG, the coarsening process is 

fully automatic. Despite of the extra computation costs of 
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this automation phase [19, 20], the most important strength 

of AMG is its flexibility and robustness in adapting itself to 

solve large classes of problems despite using very simple 

point-wise smoothers.  

Thus, to solve the arising system, we choose to apply 

AMG. The efficiently implemented amg_grids_setup.m 

function by J. Boyle, D.J. Silvester [21] is used as a black 

box for construction of the coarser grids and computation 

of prolongation operators. This algorithm is based on [22–

24]. Our AMG method is based on the standard multigrid 

V-Cycle. The V-Cycle is the computational process that 

goes from the fine grid down to the coarsest grid and then 

comes back from the coarsest grid up to the fine grid. We 

apply V (0, 2) cycles with a classical Gauss-Siedel 

smoother. The results of AMG solver is illustrated in 

Appendix B. 

4. Numerical Results 

Four test problems, with both constant and variable 

convection coefficients, are considered to demonstrate the 

accuracy of the present method. The first three of these 

problems are convection diffusion equations and the results 

of the present method on nonuniform grids are compared 

with those obtained using the most recent similar work 

which is available only for uniform grids [4-7].  For the 

purpose of comparison with 3D nonuniform grid, we 

consider the recent work of Ge et al. [13] that proposed a 

non-uniform HOC scheme to solve the 3D Poisson 

equation. So, our last test problem is a Poisson equation 

that can be obtained from Eq. (1) as a special case with 

zero convection coefficients.  

The errors reported are the maximum absolute errors 

over the discretized grid. The accuracy order of a 

difference scheme is evaluated by the following 

formula Order � �¡¢�£P £�⁄ �
�¡¢�¥� ¥P⁄ �  

where e! , e$  are the maximum absolute errors for two 

different grids with �N! � 1��  and  �N$ � 1��  nodes, 

respectively.  

The non-uniform grids are constructed easily. The 

interval 0 " x " 1   can be divided uniformly into i+§¨ 

intervals by nodes: x0 � 0
0©ª«

  , i � 0,1, ¬ i+§¨. However a 

stretched grid can be obtained by:  

x0 � 0
0©ª«

� ­«
® sin � ® 0

0©ª«

 ,     i � 0,1, ¬ i+§¨  

where λ¨ is a stretching parameter, �1 " λ¨ " 1. Similar 

grid stretching functions can be applied in y- and z- 

directions.  

4.1. Problem 1 

Consider the following differential equation: 

�±Iu¨¨ � u²² � u³³K � !
!1² u² � f�x, y, z�,     0 "

x, y, z " 1.  
The Dirichlet boundary condition and source function f 

are determined such that the analytic solution is 

u�x, y, z� � z. �e²,¨ � 2,! ´⁄ �1 � y�!1! ´⁄ �  

This problem has a vertical boundary layer along y �  1. 

Therefore, a non-uniform grid along the y �direction with 

clustering near  y �  1 is used while keeping uniform grids 

along the x and  z directions.  

Table 1 gives the maximum absolute errors and the 

convergence order on uniform and non-uniform grids for 

± � 0.1, 0.05 and 0.01. Although both uniform and non-

uniform HOC produces the fourth order accuracy for this 

range of ±, the values of errors are much less for the non-

uniform scheme specially as ± decreases since the boundary 

layer  becomes more effective. 

Table 1. Comparison of errors on uniform and non-uniform grids for Problem 1. 

 
N 

 

uniform Non-uniform 

Error Order Error Order 

 
  

µ� � 0.1 

¶ � 0.1 

17 5.89E-06 
 

1.23E-06  

33 3.67E-07 4.00 7.57E-08 4.02 

65 2.29E-08 4.00 4.72E-09 4.00 

 
  

µ� � 0.2 

¶ � 0.05 

17 1.25E-04 
 

1.58E-05  

33 7.95E-06 3.97 9.37E-07 4.08 

65 4.95E-07 4.01 5.79E-08 4.02 

 
  

µ� � 0.55 

¶ � 0.01 

17 5.59E-02 
 

1.24E-03  

33 5.82E-03 3.26 6.08E-05 4.35 

65 3.59E-04 4.02 3.86E-06 3.98 
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(a) (b) 

 

(c) (d) 

Figure 2. Results of s�·�¸¹º 1 for ¶ � 0.01 on grid  32� in plane � � 0.5625  (a) Non-uniform grid (µ� � µ	 � 0 , µ� � 0.55�;  (b) exact solution; (c) 

absolute error on uniform grid; (d) absolute error on non-uniform grid. 

In order to demonstrate the efficiency of the proposed 

non-uniform HOC, we plot results, at plane  z � 0.5625 

and for ± �  0.01, showing the exact solution in Fig. 2(b), 

the absolute error distribution on uniform grids in Fig. 2(c) 

and on non-uniform grids Fig. 2(d). We can see that the 

absolute error on non-uniform grids in the boundary layer 

is much smaller than that on uniform grids.  

4.2. Problem 2 

Consider Eq. (1) with:  p � �x�1 � y��2 � z�, q �
�y�1 � z��2 � x�,     r � �z�1 � x��2 � y�,  

The boundary conditions and source function f are given 

by the analytic solution.  

u�x, y, z� � £« ½⁄ 1£¾ ½⁄ 1£¿ ½⁄ ,$
£P ½⁄ ,!  .  

Here the solution is almost zero everywhere except near 

x � 1, y � 1  and z � 1, where it has thin boundary layers. 

Most numerical methods have difficulty in accurately 

resolving the solution of such problems. To solve this 

problem, a non-uniform grid along the three directions with 

clustering near x � 1, y � 1 and z � 1 is used by suitable 

grid stretching parameters. For instance, when λ¨ �  λ² �

λ³ � 0.8 the grid distribution in the xy-plane on grid 32� is 

shown in Fig. 3(a).  

Table 2 gives the maximum absolute errors and the 

convergence order on uniform and non-uniform grids. 

We select different stretching parameters according to 

the value of ±. As ± decreases, the boundary layer becomes 

thinner and nodes have to be more clustered to capture the 

singular behavior in the boundary layer. It can be observed 

that for ± = 0.1 and 0.05, the computation on both uniform 

and non-uniform grids can keep fourth order convergence. 

But when ±  decreases to 0.01, the convergence rate on 

uniform grids decreases to third order while fourth order 

convergence still maintained on non-uniform grids. And 

the computation on non-uniform grids achieves 

significantly better accuracy than on uniform grids. In order 

to illustrate the accuracy of the proposed scheme, results of 

plane z � 0.8125 ,on uniform grid and plane z � 0.8123, 

on non-uniform grid, for ± �  0.01, are presented in Fig. 3 

for the exact solution (b), the absolute error distribution on 

uniform grids (c), and on non-uniform grid (d). We can see 

that the absolute errors on non-uniform grids in the 

boundary layer are much smaller than that on uniform grids. 
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(a) (b) 

 

(c) (d) 

Figure 3. Results of Problem 2 at plane � � 0.8125 (uniform grid) and plane � � 0.8123 (non-uniform grid)  for ¶ � 0.01  (a) Non-uniform grid 

(µ� � µ� � µ	 � 0.8 , 32�), (b) exact solution, absolute error on (c) uniform grid, and (d) non-uniform grid. 

Table 2. Comparison of errors on uniform and non-uniform grids for ¶ � 0.1, 0.05 and0.01 

 N 
uniform Non-uniform 

Error order Error order 

  
 

µ� � µ� � µ	 � 0.4 

¶ �
� 0.1 

17 6.17E-04 
 

3.13E-05  

33 3.91E-05 3.98 1.97E-06 3.99 
65 2.46E-06 3.99 1.23E-07 4.00 

   µ� � µ� � µ	 � 0.6 

¶ � 0.05 

17 9.90E-03 
 

2.28E-04  
33 6.48E-04 3.93 1.40E-05 4.03 

65 4.10E-05 3.98 8.68E-07 4.01 

   µ� � µ� � µ	 � 0.8 

¶ � 0.01 

17 2.67E+00 
 

5.54E-03  

33 3.02E-01 3.14 3.37E-04 4.04 

65 2.35E-02 3.68 2.11E-05 4.00 

 

4.3. Problem 3 

Consider the following differential equation: 

�±�u¨¨ � u²²�u³³� � u¨ � u² � u³ �
� f�x, y, z�,   0 " x, y, z " 1 

The Dirichlet boundary condition and source function f  

are determined such that the analytic solution is 

u�x, y, z� � �tanh�x 2±⁄ �tanh�y 2±⁄ �tanh�z 2±⁄ � 

The solution has steep boundary layers along x � 0, y �
0  and z � 0. Therefore, a non-uniform grid along the three 

space directions with grid clustering near x � 0, y � 0 and 

z � 0 is used. 

Fig. 4 depicts the grid distribution in the xy-plane when 

the mesh is 32�, λ¨ � λ² � λ³ � �0.85   (a). Next, the 
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results for ± � 0.01 on plane z � 0.1250  are plotted: the 

exact solution (b), computed solution on uniform grid (c); 

computed solution on non-uniform grid (d);  absolute error 

on uniform grids (e), and absolute error on non-uniform 

grids(f).  

Table 3 gives the maximum absolute errors and the 

convergence order on uniform and non-uniform grids. 

We can see that the computed accuracy on uniform grids 

deteriorates for ± � 0.01 , a poor solution is obtained on 

uniform grids while considerably accurate solution is 

obtained and third or fourth order convergence is 

maintained for all values of  ±  on non-uniform grids.

 

(a) (b) 

 

(c) (d) 

 

(e)  (f) 

Figure 4. Results of Problem 3, ¶ � 0.01 on plane z=0.125 (a) Non-uniform grids (µ� � µ� � µ	 � �0.85 , 32�); (b) exact solution; (c) computed 

solution on uniform grid;  (d) computed solution on non-uniform grid;  (e) absolute error on uniform grids; (f) absolute error on non-uniform grids.    
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Table 3. Comparison of errors on uniform and non-uniform grids for Problem 3 for ¶ � 0.1, 0.05 and 0.01 

 
N 

 

Uniform Non-uniform 

Error Order Error order 

 
  

µ� � µ� � µ	 � �0.5 

¶ � 0.1 

17 4.00e-04 
 

9.87e-05  

33 2.46e-05 4.02 6.10e-06 4.02 

65 1.54e-06 4.00 3.81e-07 4.00 

 
  

µ� � µ� � µ	 � �0.65 

¶ � 0.05 

17 7.61e-03 
 

4.52e-04  

33 4.28e-04 4.15 2.69e-05 4.07 

65 2.64e-05 4.02 1.69e-06 3.99 

 
  

µ� � µ� � µ	 � �0.85 

¶ � 0.01 

17 3.52e-01 
 

6.57e-03  

33 2.27e-01 0.63 4.22e-04 3.96 

65 1.99e-02 3.51 2.69e-05 3.97 

 

4.4. Problem 4 

For the purpose of comparison with existing numerical 

results, we consider the recent work by Ge et al. [13] that 

introduced HOC scheme for solving the 3D Poisson 

equation on non-uniform grids. In this problem, we 

consider the special case of the convection diffusion 

equation (1) when  p � q � r � 0  to reduce it to 3D 

Poisson equation. 

�u¨¨ � u²² � u³³ � f�x, y, z�,    0 " x, y, z " 1  

The Dirichlet boundary condition and source function f 
are determined such that the analytic solution is  

u�x, y, z� � I!,£�«SP�/½KI!,£�¾SP�/½KI!,£�¿SP�/½K
I!,£SP/½KC   

Here the exact solution has boundary layers along x � 1, 

y � 1 and z � 1. Therefore, a non-uniform grid along all 

three directions with clustering near x � 1 , y � 1  and 

z � 1 is used. 

When λ¨ , λ²  and λ³  are more close to 1, more grid 

points are clustered near x � 1, y � 1 and z � 1. For  λ¨ �
 λ² �  λ³ � 0.8 on grid 32�and ± � 0.01, the grid in the xy 

plane is shown in Fig. 5(a). Results in plane z �
 0.8125 (for uniform grid) and z �  0.8123 (for non-

uniform grid) are shown in Figs. 5(b), (c), (d), (e) and (f) 

for: exact solution, computed solution on uniform grid, 

computed solution with the proposed scheme on non-

uniform grid ( λ¨ �  λ² �  λ³ � 0.8 ), absolute error on 

uniform and non-uniform grids, respectively. 

Table 4 gives the maximum absolute errors and the 

convergence order on uniform and non-uniform grids. 

It is observed that the convergence on uniform grid 

cannot reach fourth order but non-uniform grid, with 

suitable stretching parameter λ¨ � λ² � λ³ � 0.8, is more 

accurate and fourth convergence order is achieved. The 

case when ± � 0.01 is recently solved by Ge et al. [13], the 

results in our present work is identical as in [13]. 
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(c) (d) 

 

(e) (f) 

Figure 5. Results of  s�·�¸¹º 4, ·Ã Ä�8Å 32�, ¶ � 0.01 in the plane � �  0.8125 (for uniform grid) � �  0.8123 (for non-uniform grid) (a) Non-uniform 

grid (µ� �  µ� �  µ	 � 0.8); (b) exact solution; (c) computed solution on uniform grid; (d) computed solution on non-uniform grid;  absolute error 

distribution (e) on uniform grids; and (f) on non-uniform grids. 

Table 4. Comparison of errors on uniform and non-uniform grids for Problem 4. 

 
N 
 

Uniform Non-uniform 

Error Order Error order 

 
  

µ� � µ� � µ	 � 0.3 

¶ � 0.1 

17 3.28e-04 
 

5.05e-05  

33 2.13e-05 3.94 3.19e-06 3.98 

65 1.36e-06 3.97 2.00e-07 4.00 

 
  

µ� � µ� � µ	 � 0.5 

¶ � 0.05 

17 5.01e-03 
 

3.60e-04  

33 3.26e-04 3.94 2.24e-05 4.01 

65 2.12e-05 3.94 1.39e-06 4.01 

 
  

µ� � µ� � µ	 � 0.8 

¶ � 0.01 

17 6.65E-01 
 

8.46e-03  

33 1.45E-01 2.20 5.06e-04 4.06 

65 1.38 e-02 3.39 3.12e-05 4.02 

 
  

µ� � µ� � µ	 � 0.95 

¶ � 0.001 

17 10e-01 
 

2.48e-01  

33 10e-01 0.00 1.19e-02 4.38 

65 10e-01 0.00 6.95e-04 4.10 
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5. Conclusions 

We have proposed a transformation-free HOC finite 

difference scheme on non uniform grids for solving the 3D 

convection-diffusion equation. Generally, this scheme is 

third- to fourth- order accuracy and makes it possible to use 

whatever non-uniform pattern of spacing one chooses in 

either direction. Fourth-order accuracy, for boundary layer 

problems, is achieved on non-uniform grids with suitable 

stretching parameters as more grid points are clustered in 

the boundary layer. This scheme can solve 3D convection-

diffusion equation with constant, variable and zero 

(Poisson equation) convection coefficients. AMG method 

is applied to solve the resulting linear system from HOC 

scheme without need to specify special relaxation schemes 

and transfer operators as required in GMG method. 

Numerical results show that both uniform [4-7] and non-

uniform HOC schemes produce very accurate solutions for 

smooth problems. But for boundary layer problems, the 

uniform HOC scheme gives poor solutions while non-

uniform HOC scheme maintains accurate solutions. 

The present method can be extended to solve other 3D 

partial differential equations, such as Navier-Stokes 

equations, problem involves Neumann boundary conditions 

as well as partial differential equations with irregular 

domains. The benefits of employing the HOC schemes and 

extrapolation can be also a future extension. 

Appendix A: Details of the finite 

difference operators 

The expressions for the finite difference operators 

appearing in Eq. (8) and (11) are as follows:

X�7;<= � �NOP,Q,R,�NSP,Q,R
$� , X�7;<= � �N,QOP,R,�N,QSP,R

$= , X	7;<= � �N,Q,ROP,�N,Q,RSP
$�  

X�$7;<= � !
� Ç�NOP,Q,R

�A
� T !

�A
� !

�M
U 7;<= � �NSP,Q,R

�M
È , X�$7;<= � !

= Ç�N,QOP,R
�A

� T !
�A

� !
�M

U 7;<= � �N,QSP,R
�M

È  

X	$7;<= � !
� Ç�N,Q,ROP

	A
� T !

	A
� !

	M
U 7;<= � �N,Q,RSP

	M
È  

X�X�7;<= � !
E�= I7;1!,<1!,= � 7;1!,<,!,= � 7;,!,<1!,= � 7;,!,<,!,=K  

X�X	7;<= � !
E�� I7;1!,<,=1! � 7;1!,<,=,! � 7;,!,<,=1! � 7;,!,<,=,!K  

X�X	7;<= � !
E=� I7;,<1!,=1! � 7;,<1!,=,! � 7;,<,!,=1! � 7;,<,!,=,!K  

X�X�$7;<= � !
$�= Ç !

�A
I7;1!,<1!,= � 7;,!,<1!,=K � T !

�A
� !

�M
U I7;1!,<,= � 7;,!,<,=K � !

�M
I7;1!,<,!,= � 7;,!,<,!,=KÈ  

X�$X�7;<= � !
$�= Ç !

�A
I7;1!,<1!,= � 7;1!,<,!,=K � T !

�A
� !

�M
U I7;,<1!,= � 7;,<,!,=K � !

�M
I7;,!,<1!,= � 7;,!,<,!,=KÈ  

X�X	$7;<= � !
$�� Ç !

	A
I7;1!,<,=1! � 7;,!,<,=1!K � T !

	A
� !

	M
U I7;1!,<,= � 7;,!,<,=K � !

	M
I7;1!,<,=,! � 7;,!,<,=,!KÈ  

X�$X	7;<= � !
$�� Ç !

�A
I7;1!,<,=1! � 7;1!,<,=,!K � T !

�A
� !

�M
U I7;,<,=1! � 7;,<,=,!K � !

�M
I7;,!,<,=1! � 7;,!,<,=,!KÈ  

X�X	$7;<= � !
$=� Ç !

	A
I7;,<1!,=1! � 7;,<,!,=1!K � T !

	A
� !

	M
U I7;,<1!,= � 7;,<,!,=K � !

	M
I7;,<1!,=,! � 7;,<,!,=,!KÈ  

X�$X	7;<= � !
$=� Ç !

�A
I7;,<1!,=1! � 7;,<1!,=,!K � T !

�A
� !

�M
U I7;,<,=1! � 7;,<,=,!K � !

�M
I7;,<,!,=1! � 7;,<,!,=,!KÈ  
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where 
> , �> , �> , 
L , �Land �L  are defined in section 2 and  É � �
>  � 
L�/2 , : � ��>  � �L�/2 and ¸ � ��>  � �L�/2  

Appendix B: Results of AMG solver 

Table B1 shows the number of constructed AMG grid 

levels for ± � 0.01 on non-uniform grids for: problem 2, 

and 4 that represent problems with variable and zero 

convection coefficients, respectively. 

Table (B1) Number of constructed AMG grid levels on different grids 

17� , 33�, ËÃÅ 65�. 

N 
AMG grid levels non-uniform 

Problem 2 Problem 4 

17 

33 

65 

11 12 

13 13 

17 17 

The convergence behavior (Residual Norm versus 

AMG-V(0,2)-Cycles) for problems 2 and 4 are shown in 

Figs. (B1 and B2), respectively. It is concluded that good 

convergence rates with slight dependence on mesh sizes is 

satisfactory even for the non-uniform grids and presence of 

boundary layers. 

 

 

(B1)                           (B2) 

Figure (B1) and (B2): AMG Convergence for Problem 2 and 4 
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