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Abstract: This paper presents a new extension for the effect of radiation on natural convection flow with variable viscosity 
from a porous vertical plate in presence of heat generation. The governing boundary layer equations are first transformed into 
a non dimensional form and the resulting non linear system of partial differential equations are then solved numerically using 
finite difference method together with Keller-Box scheme. The numerical results show that the variable viscosity affects the 
surface shear stress and the rate of heat transfer, which are here in terms of skin friction coefficient and local Nusselt number. 
It affects velocity as well as temperature profiles also. These are shown graphically and tabular form for a selection of 
parameters set of consisting of viscosity variation parameterγ, heat generation parameter Q, radiation effect Rd , Prandtl 
number Pr. 
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1. Introduction 

The study of heat generation or absorption in moving 
fluids is important in problems dealing with chemical 
reactions and those concerned with dissociating fluids. 
Possible heat generation effects may alter the temperature 
distribution; consequently the particle deposition rate in 
nuclear reactors, electronic chips and semiconductor waters.   

The effect of radiation on free convection flow with 
variable viscosity from porous vertical plate in presence of 
heat generation has been drawn forth not only for its 
fundamental aspects but also for its significance in the 
contexts of space technology and processes involving high 
temperature. In the presence of heat generation, variable 
viscosity free convection boundary layer flow from a porous 
vertical plate of a steady two dimensional viscous 
incompressible fluid and the radiated heat transfer has been 
investigated. In this analysis consideration had been given to 
grey gases that emit and absorb but do not scatter thermal 
radiation. Over the work it is assumed that the surface 

temperature of the porous vertical plate, Tw, is constant, 
where Tw>T∞. Here T∞ is the ambient temperature of the 
fluid, T is the temperature of the fluid in the boundary layer, 
g is the acceleration due to gravity, the fluid is assumed to be 
a grey emitting and absorbing, but non scattering medium. 
In the present work following assumptions are made: 

• The radiative heat flux in the x-direction is considered 
negligible in comparison with that in the y direction, where 
the physical coordinates (u, v) are velocity components 
along the (x, y) axes. 

• Merkin [1] concluded free convection with blowing and 
suction. Lin and Yu [2] studied free convection on a 
horizontal plate with blowing and suction. Hossain et al [3] 
studied the effect of radiation on free convection flow with 
variable viscosity from a porous vertical plate. Hossain et al 
[4] performed flow of viscous incompressible fluid with 
temperature dependent viscosity and thermal conductivity 
past a permeable wedge with variable heat flux. Hossain and 
Takhar [5] studied radiation effect on mixed convection 
along a vertical plate with uniform surface temperature.  
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• The physical property, variable viscosity may change 
significantly with temperature. Accordingly, Gary et al. [6] 
and Mehta and Sood [7] have concluded that when this 
effect is included, the flow characteristics substantially 
change compared to the constant viscosity case. Recently, 
Kafoussius and Williams [8] have investigated the effect of 
the temperature-dependent viscosity on the mixed 
convection flow past a vertical flat plate in the region near 
the leading edge using the local non-similarity method. In 
these studies, they concluded that when the viscosity of a 
fluid is sensitive to temperature variations, the effect of 
temperature-dependent viscosity has to be taken into 
consideration, otherwise considerable errors may occur in 
the characteristics of the heat transfer process. Hossain et al. 
[9] studied the effect of radiation on free convection flow 
from a porous vertical plate. They [9] analyzed a full 
numerical solution and found an increase in Radiation 
parameter Rd causes to thin the boundary layer and an 
increase in surface temperature parameter causes to thicken 
the boundary layer. The presence of suction ensures that its 
ultimate fate if vertically increased is a layer of constant 
thickness.  

• Vajravelu and Hadjinicolaou [10] perfomed the heat 
transfer in a viscous fluid over a stretching sheet with 
viscous dissipation and internal heat generation In this study, 
they considered that the volumetric rate of heat generation, 

3[ / ]mq W m should be 

( )0
0

Q T T for T Tm
q

for T T

 − ≥ ∞ ∞= 
< ∞

 

where 0Q is the heat generation constant. The above relation 
explained is valid as an approximation of the state of some 
exothermic process and having T∞ as the onset temperature. 
When the inlet temperature is not less than T∞  they used 

( )0Q T T− ∞ . Molla et al. [11] studied the 
Magnetohydrodynamic natural convection flow on a sphere 
with uniform heat flux in presence of heat generation. 

None of the aforementioned studies, considered variable 
viscosity and the heat generation effects on laminar 
boundary layer flow of the fluids along porous plate with 
radiation heat loss.  

In the present study, we have investigated the effects of 
radiation with variable viscosity on natural convection flow 
from a porous vertical plate in presence heat generation 
numerically. The results will be obtained for different 
values of relevant physical parameters and will be shown in 
graphs as well as in tables. 

The governing partial differential equations are reduced 
to locally non-similar partial differential forms by adopting 
some appropriate transformations. The transformed 
boundary layer equations are solved numerically using 
implicit finite difference scheme together with the Keller 
box technique [12]. Here, we have focused our attention on 
the evolution of the surface shear stress in terms of local 
skin friction and the rate of heat transfer in terms of local 
Nusselt number, velocity profiles as well as temperature 

profiles for selected values of parameters consisting of heat 
generation parameter Q, variable viscosity γ, Prandtl 
number Pr and the radiation parameter Rd. 

2. Problem Formulation 

We have investigated the effect of radiation with variable 
viscosity on free convection flow from a porous plate in 
presence of heat generation. The fluid is assumed to be a 
grey, emitting and absorbing but non scattering medium. 
Over the work it is assumed that the surface temperature of 
the porous vertical plate, Tw, is constant, where T Tw> ∞ . The 
physical configuration considered is as shown in Fig.1: 

 
Figure 1. The coordinate system and the physical model 

The conservation equations for the flow characterized 
with steady, laminar and two dimensional boundary layer; 
under the usual Boussinesq approximation, the continuity, 
momentum and energy equations can be written as: 

0
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With the boundary conditions  

0, 0, 0, .

0, 0, 0, ,

, 0, 0,

x y u T T

y x u v V T Tw

y x u T T

= > = = ∞

= > = =− =

→ ∞ > = = ∞

              (4) 

where ρ is the density, k is the thermal conductivity,β is the 
coefficient of thermal expansion, ν is the reference 
kinematic viscosity ν = µ/ρ , µ is the viscosity of the fluid, 
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Cp is the specific heat due to constant pressure and qr is the 
radiative heat flux in the y direction. In order to reduce the 
complexity of the problem and to provide a means of 
comparison with future studies that will employ a more 
detail representation for the radiative heat flux; we will 
consider the optically thick radiation limit. Thus radiation 
heat flux term is simplified by the Rosseland diffusion 
approximation [Ozisik (1973)] and is given by [13] 

( )
44

3

T
qr

a yr s

σ
σ

∂=−
+ ∂

        (5a) 

In Equation (5a) ar is the Rosseland mean absorption 
co-efficient, σs is the scattering co-efficient and σ is the 
Stephan-Boltzman constant.  

The absolute viscosity µ is assumed to be vary with 
temperature according to a general functional form µ = µf 

s(T), where µf is the absolute viscosity at the film 
temperature Tf and s(Tf) = 1. This form is chosen to allow 
definition of the stream function based on the absolute 
viscosity at the film temperature. For liquids, all transport 
properties vary with temperature. However, for many 
liquids , petroleum oils, glycerin , glycol, silicon fluids and 
some molten salt, the percent variation of absolute viscosity 
with temperature is much more than that of the other 
properties. Under the above conditions an analysis 
incorporating the above assumptions and describing the 
momentum and thermal transport within the flow field are 
more accurate than the usual assumption of constant 
properties evaluated at some reference temperature. It 
should be mentioned here that there are some fluids for 
which properties other than µ vary strongly with 
temperature. In particular, water and methyl alcohol exhibit 
strong variation of both µ and β. The analysis presented 
here is not applicable to these liquids since we are 
considering only the variation of the absolute viscosity as a 
function of temperature. However, for the case of an 
isothermal surface (in an unstratified ambient fluid), the 
variation of the absolute viscosity with temperature takes 
the form µ = µfS(θ), where θ is the dimensionless 
temperature in the boundary layer defined in equation (4), 
such that S(1/2) = 1. A wide variety of functional forms of 
S(θ) satisfying this requirement was investigated in the 
literature such as algebraic expressions, power series, 
exponential forms, etc. Following Carey and Mollendorf 
[14], the simplest form of the absolute viscosity is used in 
this investigation as follows: 

µ = µf[1+1/µf (dµ/dT)f (T − T∞)]        (5b) 

This simple form amounts to a linear variation of the 
absolute viscosity with temperature, with the slope dµ/dT , 
evaluated at film temperature. The assumed linear variation 
of viscosity with temperature gives rise to a new parameter γ 
defined by 

γ=1/µf(dµ/dT)f(Tw−T∞)            (5c) 

Now introduce the following non-dimensional variables: 
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Where, θ is the non-dimensional temperature function, θw is 
the surface temperature parameter and Rd is the radiation 
parameter. 

Substituting (6) into Equations (1), (2) and (3) leads to the 
following non-dimensional equations 

1 2
1 2 3
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   (7) 
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Where Pr=νCp/k is the Prandtl number and Q=vQ0/ν2ρCp 
is the heat generation parameter . 

The boundary conditions (4) become 

0, 1 at 0

0, 0 as

f

f

θ η

θ η

′= = = =

′ = = → ∞

0, f
           (9) 

The solution of equations (6), (8) enable us to calculate 
the nondimensional velocity components u,v from the 
following expressions  

2
2

( , )
( )

1
(3 )

u u f
Vg T Tw

f
v f f

V

ν
ξ ξ η

β
ν

ξ ξ η ξ
ξ

′= =
− ∞

∂− ′= = + − +
∂

       (10) 

In practical applications, the physical quantities of 
principle interest are the shearing stress τw and the rate of 
heat transfer in terms of the skin-friction coefficients Cfx 
and Nusselt number Nux respectively, which can be written 
as 

( )( ) , 00
V

Nu q q C
x c r fxV T g T

ν
τ ηη β

= + = ==∆ ∆     (11) 

where 

 and   
0 0

u T
q kw cy y

τ µ
η η

   ∂ ∂= = −      ∂ ∂   = =
        (12) 

qc is the conduction heat flux. 
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Using the Equations (6) and the boundary condition (9) 
into (11) and (12), we get 

( )

( )

1 ,0
2

41 31 ,0
3

C f x
f x

Nu R xd wx

γξ

ξ θ θ

  ′′= + 
 

 − ′= + 
 

          (13) 

The values of the velocity and temperature distribution 
are calculated respectively from the following relations: 

( )2 ( , ),      ,u f x yξ ξ η θ θ′= =          (14) 

3. Numerical Procedures 

Solution of the local non similar partial differential 
equation (7) to (8) subjected to the boundary condition (9) 
are obtained by using implicit finite difference method with 
Keller-Box Scheme, which has been described in details by 
Cebeci [15]. 

The solution methodology of equations (7) and (8) with 
the boundary condition given in eqn. (9) for the entire ξ 
values based on Keller – box scheme is proposed here. The 
scheme specifically incorporated a nodal distribution 
favoring the vicinity of the plate, enabling accuracy to be 
maintained in this region of steep gradient. In detail 
equations (7) and (8) are solved as a set of five simultaneous 
equations. 
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To apply the aforementioned method, we first convert 
Equations (15)-(16) into the following system of first order 

equations with dependent variables ),( ηξu , ),( ηξv , 
),( ηξp and ),( ηξg  as 

f′′ = u, u′= v, g =θθθθ, and θ′= p        (17) 
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where 

p1 =3, p2 = 2, p3 = 4

3
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 , p4 = Q and p5 = γ    (20) 

The corresponding boundary conditions are 
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( , ) 0, ( , ) 0

f u g

u g

ξ ξ ξ

ξ ξ

= = =

∞ = ∞ =
         (21) 

We now consider the net rectangle on the (ξ,η) plane and 
denote the net point by  
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Now we write the difference equations that are to 
approximate Equations (17) - (19) by considering one mesh 
rectangle for the mid point ( , 1 )

2
n n jξ −  to obtain  

1
1/2

nnf fj j n
u

jh j

− −
= −

               

(23) 

1
1/ 2

n nu uj j nv
jh j

− − = −                

(24) 

1
1/2

n ng gj j np
jh j

− − = −                

(25) 

Similarly Equations (18) – (19) are approximate by 

centering about the midpoint 
1

( , 1 )2
2

n n jξ −
− . Centering the 

Equations (22) about the point 
1

( , )2n nξ −  without 
specifying η to obtain the algebraic equations. The 
difference approximation to Equations (18)-(19) become  

),( j

n ηξ



58  Amena Ferdousi et al.: The effect of radiation on natural convection flow of fluid with variable  
viscosity from a porous vertical plate in presence of heat generation 

 

( ){ } ( ){ } ( ){ }

( ){ }

1
1

[ 1 0.5 1 0.5 1 0.55 5 512

1
1 0.5 ] {( ) }( )5 1 1 11

2 2

2{( ) }( )2 1 1 1
2 2 2

1 1 1( ) { }
1 1 1 1 1 1

2 2 2 2 2 2

h n n nj
p g v p g v p g v

j j j

n n n
p g v p f vnj j j

n n np u gn
j j j

n n n n n nv f v v f Rn
j j j j j j

α

α

ξ α

−
−

+ − − + − + + −−

−− + − + +− − −

− + +
− − −

− − −− + − =
− − − − − −

 

Where 

( ){ } ( ){ } ( ) ( )

( ) ( ) ( ) ( )

1 1 11 1
[ 1 0.5 1 0.5 ]5 5 11 1 11

2 2 2

11 12 1 1 1 1
2 1 11 1 1

1
22 2 2

n n n nn
L h p g p g p fvj j jj j j

nn nn n np u g p h v vj j j
jj j j

ξ

− − −− −= + − − + − +−− − −

−− −− − − −− + − + − −−− − −

 

And 

( )1 1 12 1( )1 1 1 1
2 2 2 2

n n nnR L u fvn
j j j j

α

 
  − − −−= − + − + 
 − − − −
  

 

1 1 1 3
[ ( ) {{ (1 ) }1 3Pr

3 2{ (1 ) } }] ( )3 41 1 1 1 1
2 2 2 2

{( ) }( ) [{( )1 1 1 1
2 2 2

1 1 1( ) }
1 1 1 1 1

2 2 2 2 2

1 1
1 1 1 1

2 2 2 2

n n n
h p p h p p gj j j j j

n n n n n
p p g p p g

j j j j j

n n np f p ugn n
j j j

n n n n nug u g u g
j j j j j

n n n
p f p f

j j j j

ξ ξ

α α

− −
⇒ − + + ∆ −−

+ ∆ + +− − − − −

+ + −
− − −

− − −− − +
− − − − −

− −+ −
− − − −

1}]
1

2

n n
T

j

−=
−

 

where 

11 1 1 1
[ ( )1 1Pr2

1 3 1 3 1{{ (1 ) } { (1 ) } }]3 3

1 1 1 1 1 1[ ( ) ( ) ( ) ]4 2 11 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1
[( ) ( ) ]1 1 1 1

2 2 2 2

n n n
M h p pj j jj

n nh p p g p p gj j j

n n n n n np p g p f p
j j j j j j

n n n n
T M f p u gnj j j j

ξ ξ

α

− − − −= − −−

− − −+ +∆ − +∆

− − − − − −− + +
− − − − − −

− − − −= − + −− − − −

 

The corresponding boundary conditions (21) become  

0, 0, 10 0 0
n n n

f u g= = =
 

0, 0
n n

u g
J J

= =  

which just express the requirement for the boundary 
conditions to remain during the iteration process. Now we 
will convert the momentum and energy equations into 
system of linear Equations and together with the boundary 
conditions can be written in matrix or vector form, where the 

coefficient matrix has a block tri-diagonal structure. The 
whole procedure, namely reduction to first order followed 
by central difference approximations, Newton’s 
quasi-linearization method and the block Thomas algorithm, 
is well known as the Keller- box method. 

 

4. Results and Discussion 

In this exertion the effect of radiation with variable 
viscosity on natural convection flow from a porous vertical 
plate in presence of heat generation is investigated. 
Numerical values of local rate of heat transfer are calculated 
in terms of Nusselt number Nux for the surface of the porous 
vertical plate from lower stagnation point to upper 
stagnation point, for different values of the aforementioned 
parameters and these are shown in tabular form in Table 1 
and Graphically in Figure 5-7. The effect for different values 
viscosity γ on local skin friction coefficient Cfx and the local 
Nusselt number Nux, as well as velocity and temperature 
profiles are displayed in Fig.2 to 7. The aim of these figures 
are to display how the profiles vary in ξ , the selected 
streetwise co-ordinate. 

Figures 2(a)-2(b) display results for the velocity and 
temperature profiles, for different values of viscosity 
parameter γ = -1.0, 0.5, 1.0, 1.5, 1.9 while Prandtl number Pr 
= 1.0, radiation parameter Rd =0.1 surface temperature 
parameter θw = 1.0 and heat generation Q = 1.0. It has been 
seen from Figures 2(a)-2(b) that as the viscosity parameter γ 

increases, the velocity profiles decreases and the 
temperature profiles increase. The velocity is zero at the 
boundary wall then the velocity increases to the peak value 
as η increases and from η = 1 toη = 2 it is reverse and after 
η = 2 it is decreasing, finally the velocity approaches to zero 
(the asymptotic value). 

The changes of temperature profiles in the η direction also 
shows the typical temperature profiles for natural convection 
boundary layer flow that is the value of temperature profiles 
is 1.0 (one) at the boundary wall then the temperature profile 
increases for η<1 and decreases gradually along η ≥ 1 
direction to the asymptotic value.  
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Figure 2. (a) Velocity and (b) temperature profiles for different values of 

viscosity parameter γ with others fixed parameters 

However, in figures 3(a)-3(b) it has been shown that when 
the Prandtl number Pr = 0.8, 2.0, 4.0, 6.0 and 8.5 increases 
with θw = 1.0, Rd =0.1, Q = 1.0 and γ = 1.0 both the velocity 
and temperature profiles decrease. 

Figures 4(a) display results for the velocity profiles for 
different values of heat generation parameter Q with Prandtl 
number Pr = 1.0, radiation parameter Rd =0.1, viscosity 
parameter γ = 1.0 and surface temperature parameter θw = 
1.0. It has been seen from figure 4(a) that as the heat 
generation parameter increases the velocity profiles 
increase . It is also observed from figure 4(a) that the 
changes of velocity profiles in the η direction reveals the 
typical velocity profile for natural convection boundary 
layer flow, i.e., the velocity is zero at the boundary wall then 
the velocity increases to the peak value as η increases and 
finally the velocity approaches to zero (the asymptotic 
value). The maximum values of velocity are recorded to be 
0.34331, 0.30681, 0.27315, 0.23731, 0.21668 for Q =.10.0, 
7.0, 5.0, 2.0, and 0.0 at η=0.99806, 0.83530, 0.99806 
η=0.94233 and η=0.94233. The velocity is 0.34331 at 
η=0.99806 for Q = 10.0. Here, it is observed that at 
η=0.99806, the velocity increases by 84.19% as the heat 
generation parameter Q changes from 0 to 10.0. 

From figure 4(b), as the heat generation parameter Q 

increases, the temperature profiles increase. We observed 
that the temperature profile is 1.0 (one) at the boundary wall 
then the temperature profile decreases gradually along η 
direction to the asymptotic value. But for Q = 10.0, 7.5 the 
temperature profile increases, at η=0.49865 it is 1.28427, 
1.06217 then it decrease. And for other values it is gradually 
decreasing.  

 

Figure 3. (a) Velocity and (b) temperature profiles for different values of 

prandtl number Pr with others fixed parameters. 

Figure 5(a) shows that skin friction coefficient Cfx 

increases for increasing values of viscosity parameter γ with 
Prandtl number Pr = 1.0, radiation parameter Rd =0.1, 
surface temperature parameter θw = 1.0 and heat generation 
Q =1.0.It is observed from Figure 5(a) that the skin friction 
increases gradually from zero value at lower stagnation 
point along the ξ direction and from Figure 5(b); it reveals 
that the rate of heat transfer decreases along the ξ direction 
for γ = -1.0, 0.5, 1.0, 1.5 and 1.9 Nux are along ξ axis. A hot 
fluid layer is created adjacent to the interface of the wall due 
to the viscosity mechanism and ultimately the resultant 
temperature of the fluid exceeds the surface temperature. 
Accordingly, the heat transfer rate from the surface 
decreases as shown in Fig. 5(b) 

The variation of the local skin friction coefficient Cfx and 
local rate of heat transfer Nux for different values of Prandtl 
number Pr while wθ = 1.0, Rd =0.1, Q = 1.0 and γ =1.0 are 
shown in Figures 6(a)-6(b). We can observe from these 
figures that as the Prandtl number Pr increases, the skin 
friction coefficient decreases and rate of heat transfer 
increases. 
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Figure 4. (a) Velocity and (b) temperature profiles for different values of 

heat generation parameter Q with others fixed parameters 

 

 

Figure 5. (a) Skin friction and (b) rate of heat transfer for different values 

of viscosity parameter γ with others fixed parameters. 

 

 
Figure 6. (a) Skin friction and (b) rate of heat transfer for different values 

of prandtl number Pr with others fixed parameters. 
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Figure 7. (a) Skin friction and (b) rate of heat transfer for different values 

of heat generation parameter Q with others fixed parameters 

Figures 7(a)-7(b) show that skin friction coefficient Cfx 

increase and heat transfer coefficient Nux decreases for 
increasing values of heat generation parameter Q while 
viscosity parameter γ = 1.0,.Prandtl number Pr = 1.0, 
radiation parameter Rd =0.1 and surface temperature 
parameter θw = 1.0. The values of skin friction coefficient 
Cfx and Nusselt number Nux are recorded to be 0.27211, 
0.25685, 0.243230. 23105, and 0.22016 and 0.10476, 
0.79419, 1.41670, 1.98094 and 2.49468 for Q = 10.0, 5.0, 
7.0.2.0, 0.0 and respectively which occur at the same point 
ξ = 0.3. Here, it observed that at ξ = 0.3, the skin friction 
increases by 23.59% and Nusselt number Nux decreases by 
95.8% as the heat generation parameter Q changes from 0.0 
to 10.0. It is observed from figure 7(a) that the skin friction 
increases gradually from zero value at lower stagnation 
point along the ξ direction and from Figure 7(b); it reveals 
that the rate of heat transfer decreases along the ξ direction.  

Numerical values of rate of heat transfer Nux and skin 
friction coefficient Cfx are calculated from Equations (13) 
from the surface of the vertical porous plate. Numerical 

values of Cfx and Nux are shown in Table 1. 
In the table below the values of skin friction coefficient 

Cfx and Nusselt number Nux are recorded to be 0.27211, 
0.25685, 0.24323and 0.22016 and 0.10476, 0.79419, 
1.41670 and 2.49468 for γ = 1.0 respectively which occur at 
the same point ξ = 0.3. Here, it observed that at ξ = 0.3, the 
skin friction increases by 23.59% and Nusselt number Nux 
decreases by 95.8% as the heat generation parameter Q 

changes from 0.0 to 10.0.  

Table 1. Skin friction coefficient and rate of heat transfer against ξ for 

different values of heat generation parameter Q with other controlling 

parameters Pr = 1.0, Rd = 0.1, θw =1.0.and γ = 1.0. 

ξξξξ 
Cfx Nux Cfx Nux 

Q = 10.0 Q = 7.5 

0.01 
0.04 
0.07 
0.10 
0.13 
0.16 
0.19 
0.22 
0.25 
0.30 

0.00736 
0.02954 
0.05217 
0.07527 
0.09945 
0.12463 
0.15164 
0.18043 
0.21208 
0.27211 

59.75933 
14.94168 
8.44547 
5.69880 
4.13889 
3.06624 
2.25980 
1.58858 
1.00362 
0.10476 

0.00736 
0.02950 
0.05202 
0.07483 
0.09849 
0.12281 
0.14849 
0.17531 
0.20416 
0.25685 

59.79267 
15.02191 
8.57546 
5.87960 
4.37475 
3.36163 
2.62104 
2.02342 
1.52247 
0.79419 

ξξξξ Q = 5.0 Q = 0.0 

0.01 
0.04 
0.07 
0.10 
0.13 
0.16 
0.19 
0.22 
0.25 
0.30 

0.00736 
0.02947 
0.05187 
0.07440 
0.09756 
0.12105 
0.14548 
0.17051 
0.19684 
0.24323 

59.82600 
15.10199 
8.70371 
6.05858 
4.60638 
3.64915 
2.96862 
2.43614 
2.00692 
1.41670 

0.00736 
0.02947 
0.05187 
0.07440 
0.09756 
0.12105 
0.14548 
0.17051 
0.19684 
0.24323 

59.82600 
15.10199 
8.70371 
6.05858 
4.60638 
3.64915 
2.96862 
2.43614 
2.00692 
1.41670 

Table 2. Comparison of present numerical results of Cfx and Nux for the 

values of prandtl number Pr = 1.0, radiation parameter Rd = 0.05, for 

surface temperature θw= 1.1 and θw= 1.5 without the effect of 

magnetohydridynamic and heat generation parameter with Hossain et al. 

[9]. 

ξξξξ 

θθθθw= 1.1 

Hossain Present 

Cfx Nux Cfx Nux 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 

0.0655 
0.1316 
0.2647 
0.3963 
0.5235 
0.6429 
0.8874 

6.4627 
3.4928 
2.0229 
1.5439 
1.3247 
1.1995 
1.0574 

0.06535 
0.13138 
0.26408 
0.39519 
0.52166 
0.64024 
0.88192 

6.48306 
3.50282 
2.03018 
1.55522 
1.32959 
1.20347 
1.06109 

ξξξξ 

θθθθw = 2.5 

Hossain Hossain 

Cfx Cfx Cfx Cfx 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 
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5. Comparison of the Results  

In order to verify the accuracy of the present work, the 
values of Nusselt number and skin friction for Q=0, 
Rd=0.05.Pr=1.0, γ = 0 and various surface temperature wθ
=1.1, wθ =2.5 at different position ofξ are compared with 
Hossain [9] as presented in Table 2. The results are found to 
be in excellent agreement. 

6. Conclusion  

For different values of relevant physical parameters 
including the viscosity parameter γ , the effect of radiation 
on natural convection flow from a porous vertical plate in 
presence of heat generation has been investigated. The 
governing boundary layer equations of motion are 
transformed into a non-dimensional form and the resulting 
non-linear systems of partial differential equations are 
reduced to local non-similarity boundary layer equations, 
which are solved numerically by using implicit finite 
difference method together with the Keller-box scheme. 
From the present investigation the following conclusions 
may be drawn:  

• Significant effects of heat generation parameter Q and 
viscosity parameter γ on velocity and temperature profiles as 
well as on skin friction coefficient Cfx and the rate of heat 
transfer Nux have been found in this investigation but the 
effect of heat generation parameter Q and viscosity 
parameter γ on rate of heat transfer is more significant. An 
increase in the values of viscosity parameter γ leads to the 
velocity decrease and the temperature profiles increase, the 
local skin friction coefficient Cfx  increase and the local rate 
of heat transfer Nux decreases at different position of ξ for Pr 
=1.0. 

• For increasing values of Prandtl number Pr leads to 
decrease the velocity profile, the temperature profile and the 
local skin friction coefficient Cfx but the local rate of heat 
transfer Nux increases.  

•••• An increase in the values of Q leads to increase the 
velocity profiles and the temperature profiles and also the 
local skin friction coefficient Cfx increase but and the local 
rate of heat transfer Nux decreases. 

Nomenclature 

ar  Rosseland mean absorption co-efficient 

Cf  Local skin friction coefficient 

Cp  Specific heat at constant pressure 

f  Dimensionless stream function 

g  Acceleration due to gravity 

k  Thermal conductivity 

Nux  Local Nusselt number 

Pr  Prandtl number 

Q  Heat generation parameter 

qw  Heat flux at the surface 

cq  Conduction heat flux 

rq  Radiation heat flux 

Rd  Radiation parameter 

T  Temperature of the fluid in the boundary layer 

T∞ Temperature of the ambient fluid 

Tw  Temperature at the surface 

( , )u v
 

Dimensionless velocity components along the 
( )yx, axes 

V  
Wall suction velocity (x, y)  Axis in the 
direction along and normal to the surface 
respectively 

Greek symbols 

α  Equal to 4
3 Rd  

β  Coefficient of thermal expansion 

∆  Equal to 1wθ −  

T∆  Equal to T Tw− ∞  

η  Similarity variable 

θ Dimensionless temperature function 

wθ  Surface temperature parameter 

µ Viscosity of the fluid 

ν  Kinematic viscosity 

ξ  Similarity variable 

ρ Density of the fluid 

σ Stephman-Boltzman constant 

sσ  Scattering co-efficient 

µf absolute Viscosity at the film temperature 

τ  Coefficient of skin friction 

τw Shearing stress 

ψ Non-dimensional stream function 

Subscripts 

w Wall conditions 
∞ Ambient temperature 
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