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Abstract: In this paper, variational iteration method (VIM) and multivariate padé approximaton (MPA) were compared.
First, partial differential eqaution has been solved and converted to power series by variational iteration method (VIM),
then the numerical solution of partial differential eqauation was put into multivariate padé series. Thus the numerical solu-
tions of the partial differential eqautions were obtained. Numerical solutions of two examples were calculated and results

were presented in tables and figures.
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1. Introduction

Many powerful numerical and analytical methods have
been presented. Among them, the Adomian decomposition
method (ADM) [1-4], the variational iteration method
(VIM) [5-8], differential transform method (DTM) and
multivariate padé approximaton (MPA) [9-15] are relative-
ly new approaches providing an analytical and numerical
approximation to linear and nonlinear problems.

The variational iterational method (VIM) was first pro-
posed by He [16,17] and has been succesfully applied to
autonomous differential equations, non-linear partial diffe-
rential equations, non-linear polycrystalline solids, and
other fields.

Multivariate padé approximaton (MPA) has been suc-
cessfully applied to solve partial differential equations.
Many definitions and theorems have been developed for
Multivariate Padé Approximations (MPA) (see [18] for a
survey on Multivariate Padé approximation).

2. The Variational Iteration Method

The basic concepts and principles variational iteration
method can be seen in [19-22]. Ali and Raslan [25] ob-
tained the following iteration formula for general PDE
equation (1) by using the basic concepts and principles of
variational iteration method:

Lu+Lu+Lu+Lu+Nu=g(x,y,z,1). (1)

where, Lt , Lx , Ly and LZ are linear operators of 7, X,

Y and z, respectively, and N is a non-linear operator.
According to VIM, the following correction functional can
be expressed in -, X-, J -and z -directions, respectively,
as follows [25] :

U, (X, ,2,8) =u,(x,y,2,0) +

0 - (2)
1 s%n X y 'z n £

j/l{Lu +(L,+L, +L, +N)i, - g} ds

0

U, (x,y,z,8) =u,(x,y,z,t) +

JEAZ{Lxu” +(L,+ L, +L +N)i,-g}ds, 3)
0

U (X, 3,2,8) =1, (x, y,2,0) +

[A{Lu, +(@L 4L +L + N, - g} ds, )
0

U, (X, ,2,0) =u,(x,y,2,0) +

[ - (5)
4 s%n x y 1 n N

J.A {Lu +(L +L,+L +N)u g}ds

0

where A,4,,A; and A, are general Lagrange multipliers
[21], which can be identified optimally via the variational
theory [21, 23] and fln is a restricted variaton which means



20 Veyis TURUT: Numerical approximations for solviing partial differential equations with variable coefficients

511,1 = 0. By this method, first the Lagrange multipliers
are determined A, (i =1,2,3,4) which will be identified
optimally. The succesive approximations u,.;,# =0, of the
solution U will be readily obtained by suitable choice of
trial function 1, [25]. Consequently , the correction func-

tional will give several approximations. Then, one of this
approximations was compared with multivariate padé ap-
proximation by putting into multivariate padé series .

3. Multivariate Padé Approximation

Consider the bivariate function f(x,y) with Taylor se-
ries development

S =Y ey (6)

i.j=0

around the origin[24]. We know that a solution of unva-
riate Padé approximation problem for

f(x)zgcixf R

is given by

m=1 m-n

n
Zc,.x' xz cx' x" Zcix’
i=0 i=0 i=0

POZ| G G Gy (8)
cm+n cm+n—l o cm
and
1 x x"
g(x)=|Tm T G ©)
Cm+n Cm+n—1 Cm

Let us now multiply / throw in p(x) and g(x) by
x/ (j=2,...n+1) and afterwards divide j th column in
p(x) and g(x) by x/™' (j=2,..,n+1). This results in a
multiplication of numerator and denominator by x™".
Having done so, we get

m . m-1 m-n X
Sex Sex Sex
i=0 i=0 i=0
m+1 m m+l-n
Cti CnX R
m+n m+n=1 m 10
P(X) _ [Cnen® Cotnm1X ¥ (10)
q(x) 1 1 a 1
. m+1 m N m+l-n
('rm-l)C me ('nH-l—nx
. m+n m+n-1 N m
('m+nx cm*n’l o ('mx
if (D=detD,, #0).

This quotent of determinants can also immediately be

written down for a bivariate function f(x,y). The sum
qui shall be replaced k th partial sum of the Taylor se-

ries development of f'(X, ) and the expression ¢,x* by
an expression that contains all the terms of degree £ in
f(x,¥). Here a bivariate term ¢;x'y’is said to be of degree
i+ j.If we define

m m=1 m=-n
3 i J . i J . i J
RTINS 5 ety
i+ =0 i+j=0 it =0
c”x’y’ Z c”x’y’ Z c”x'y’
p(x, ) = [nimmn [Ty i+ jEm1-n (11)
i R B s i
c,x'y c,x'y cyx'y
i+ j=mn i+ j=m -1 i+j=m
and
1 1 1
iy i i
2oyl Yoexyt e R ey
i+j=m+1 iti=m i+ jEmel-n
q(x,y) = 4 A . : (12)
c,;x'y’ c,;x'y’ Z c,;x'y’
itj=m+n i+ jEmtn-1 i+ j=m

Then it is easy to see that p(x,y) and q(x,y) are of the
form

mn+m

p(x,y)= D ayx'y
e (13)
g(x,y) = Z byx'y’

i+ j=mn

J

We know that p(x.») and ¢(x,») are called Padé equa-
tions[24]. So the multivariate Padé approximant of order
(m,n) for f(x.») is defined as

) = p(x,y)

. (X
qg(x,y)

(14)

4. Applications and Results

In this section, the two methods VIM and MPA wil be
illustrated by two examples. All the results are calculated
by using software mapple.

Example 4.1.

Consider the one-dimensional heat equation with varia-
ble coefficients

u, (x,1) —%um(x,t) =0, (15)

and the initial condition u(x,0) = x”. The variational ite-
rational schema of equation (15) has the form[25]

o (5,0) =, (x,0)+ [ ) {(un(x,s» —’;—'(ﬁ,,(x,s»n}ds, (16)

where 7>0 and u,(x,t) =x’. This yields the stationary
conditions
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1+A

= =0, A(s)=0. (17)

Hence, the Lagrange multiplier is
A=-1. (18)

Substituting this value of the Lagrange multiplier into
the functional (16) gives the iteration formula[25]

tyr(50) = 1, (5,0) = | {(u,, (e.5), =, (x,s))n}ds- (19)

Ali and Raslan obtained [25] the folowing succesive ap-
proximations, starting with an initial approximation:

u, (x,6) =u(x,0) =x"

and using the iteration formula (19),

u (x,t)=(1+ X2,

2
uz(x,r)=(1+t+%)x2,

2 3

t t
uy(x,1) :(1+t+5+5)xzs

2 3

t o,
=(l+t+—+—+—
u (o) =+t 21 31 4!)x’

_ t2 t3 t4 t5 )
”5(X,l)—(1+l+a+§+z+§)x ,
t2 3 t4 5 t6
_ I TS TRL AN LN T 2
e R TRPTAR TN (20)

The exact solution is given as u(x,f) =e'x” in [28]. Now
let us calculate the approximate solution of Eq.(20) for
m=6 and n =2 by using Multivariate Padé approximation.
To obtain Multivariate Padé equations of Eq.(20) for
m=6 and n=2, we use Egs.(11) and (12). By using
Eqgs.(11) and (12) We obtain,

o ol Loy 1, 1,505 5.5 1 5,
X+t AL A= A== X X=X
2 24 2 6 2

1 1

)= — X —x -
P 120 2 6
Loes Lo Lo
720 120 24
- A +128 +72 +240+360)x°
1036800
and
1 1 1
q(x,t) = szls —xit =X =
’ 120 24 6
1 e 1 2 L 2,4
720 120 24

t*(30-10¢ +¢7)x*
86400

So the Multivariate Padé approximation of order (6,2)
for eq.(20), that is
_ (£t +126 +721% +240t +360) x>

)=
f52(50) 1230-10+2%) @b

Example 4.2.
Consider the one-dimensional wave equation with varia-
ble coefficients

2

u,(x,t)— % u_ (x,1)=0, (22)

with initial conditions u(x,0) =x, u,(x,0)= x* . The cor-
rection functional for equation (22) is given as[25]

pn (X50) =, (x, 1) +

u
jA{(u,,(x,sm—xz—zwn(x,s))”}ds, 3)

where 720 and u,(x,t) = x+£x. Then, the stationary

conditions are

1+ /1| =0, 1+ /1| =0, A"(s)=0. (24)

This in turn gives
A=s—t (25)

Substituting this value of the Lagrange multiplier into
functional (23) gives the iteration formula [25]

Uy (X,0) =, (x,0) +

j(s —t){(un(x,S))ss ‘%Z(un(x,S))xx}dS' (26)

Selecting the initial approximation: u,(x,?) = x+ux*, with
the itration Formula (26), Ali and Raslan obtained [25] the
following succesive approximations

3
t 2
u,(x,1) =x+(t+§)x“,

t3 t5
) =x e+ D,
wos @
SxH(ft—t—t—
e AT T
t3 5 t7 tl) )

SxH(ft— et —
e T TR TRETL

)2,

t3 tS t7 t9 tll
U 1) XA (b )
3150 70 9 11!

The exact solution is given asu(x,#) = x+x”sinh¢ in [28].
Now let us calculate the approximate solution of Eq.(20)
for m=11 and n =2 by using Multivariate Padé approxima-
tion. To obtain Multivariate Padé equations of Eq.(20) for
m=11 and n=2, we use Eqs.(11) and (12). By using
Egs.(11) and (12) We obtain
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Dol b1,
X+X'f+gx'! +—xt+—xt +

BT NPT EVUU DT IOV DO B
Xt x+xXt+=—xt +—xt +——x1 x+xt+—xt +—xt +—xt
6 5040 6 120 5040

5040 362880
s~ 0 v 0
1 ent 0 1 e
39916800 362880
(—181440¢° +3144960xt" +136080x° +2448xt"
_ +19x” +19958400x7 +19958400)xr*
262815992119290000
and
1 1 1
1
x,t) = 0 x’t’ 0
7(1) 362880
1 x2 11 1 th‘J
39916800 362880
__ (=110+7)xM"
14485008384000

So the Multivariate Padé approximation of order (11,2)
for eq.(27), that is

(~1814407> +3144960xt° +
136080x" +2448xt” +19x1° +19958400xt +19958400)x (28)

o (x,0) ==

(181440(=110¢%))

Figure 1. Exact solution of partial differential equation in example 1.
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Figure 2. Multivariate Padé approximation for VIM solution of partial
differential equation Example 1.

Table 1. Comparison of VIM and MPA for example 1.

T
1.0 1.0 2.718281828 2.718253968 0.000027860
09 09 1.992278520 1.992268535 0.9985x107°
0.8 0.8 1.424346194 1.424342992 0.3202x107°
0.7 0.7 09867388264  0.9867379342 0.8922x107°
0.6 0.6 0.6559627680  0.6559625616 0.2064x10°
0.5 05 04121803178  0.4121802805 0.373x1077
04 04 0.2386919517  0.2386919470 0.47 x10 "8
03 03 0.1214872927  0.1214872923 0.4x10~°
02 02 0.04885611032 0.04885611032 0.0
0.1 0.1 0.01105170918 0.01105170918 0.0
Table 2. Comparison of VIM and MPA for example 2.
X t Exact solution i)l;ll:tri(())’l‘llx?ttlf- Itll;’szlute error of
MPA
20 2.0 12.50744163 12.50744401 0.238x107°
-1.9  -1.9  9.89806811 9.898069207 0.110%107
-1.8  -1.8  7.732644693 7.732645177 0.484x107°
-7 17 5.945876289 5.945876494 0.205x107°
-1.6 -1.6  4.481453960  4.481454042 0.82x107
-1.5 -1.5  3.290878774 3.290878805 0.31x1077
-14  -14  2.332430942 2.332430954 0.12x107
-1.3 -1.3  1.570266319 1.570266322 0.3%x107*
-2 -1.2 0973624351 0.9736243524 0.1x107*
-1.1 -1.1  0.516133439 0.5161334388 0.0
-1.0 -1.0 0.175201194 0.1752011937 0.0

2 2

Figure 3. Exact solution of partial differential equation in example 2.
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Figure 4. Multivariate Padé approximation for VIM solution of partial
differential equation in Example?.

5. Conclusion

The figure which is obtained using MPA and the figure

of the exact solution in three-dimensional are shown in
figure (1-2) and figure (3-4). As can be seen in table 1,
table 2 and figure (1-2), figure (3-4), the approximation
solutions with MPA are quite close to exact solutions. It is
also observed that MPA is robust and applicable to various
types of partial differential equations.
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