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Abstract: In this paper, variational iteration method (VIM) and multivariate padé approximaton (MPA) were compared. 
First, partial differential eqaution has been solved and converted to power series by variational iteration method (VIM), 
then the numerical solution of partial differential eqauation was put into multivariate padé series. Thus the numerical solu-
tions of the partial differential eqautions were obtained. Numerical solutions of two examples were calculated and results 
were presented in tables and figures. 
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1. Introduction 

Many powerful numerical and analytical methods have 
been presented. Among them, the Adomian decomposition 
method (ADM) [1-4], the variational iteration method 
(VIM) [5–8], differential transform method (DTM) and 
multivariate padé approximaton (MPA) [9-15] are relative-
ly new approaches providing an analytical and numerical 
approximation to linear and nonlinear problems. 

The variational iterational method (VIM) was first pro-
posed by He [16,17] and has been succesfully applied to 
autonomous differential equations, non-linear partial diffe-
rential equations, non-linear polycrystalline solids, and 
other fields. 

Multivariate padé approximaton (MPA) has been suc-
cessfully applied to solve partial differential equations. 
Many definitions and theorems have been developed for 
Multivariate Padé Approximations (MPA) (see [18] for a 
survey on Multivariate Padé approximation). 

2. The Variational Iteration Method 

The basic concepts and principles variational iteration 
method can be seen in [19-22]. Ali and Raslan [25] ob-
tained the following iteration formula for general PDE 
equation (1) by using the basic concepts and principles of 
variational iteration method: 

( , , , ).t x y zL u L u L u L u Nu g x y z t+ + + + =         (1) 

where, tL , xL , yL and zL  are linear operators of t , x , 

y  and z , respectively, and N  is a non-linear operator. 
According to VIM, the following correction functional can 
be expressed in t -, x -, y - and z -directions, respectively, 
as follows [25] : 
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where 1 2 3, ,λ λ λ  and 4λ  are general Lagrange multipliers 

[21], which can be identified optimally via the variational 

theory [21, 23] and nuɶ  is a restricted variaton which means
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0nuδ =ɶ . By this method, first the Lagrange multipliers 

are determined ( 1, 2,3, 4)
i

iλ =  which will be identified 

optimally. The succesive approximations 1, 0nu n+ ≥ , of the 

solution u  will be readily obtained by suitable choice of 

trial function 0u  [25]. Consequently , the correction func-

tional will give several approximations. Then, one of this 
approximations was compared with multivariate padé ap-
proximation by putting into multivariate padé series . 

3. Multivariate Padé Approximation 

Consider the bivariate function ( , )f x y  with Taylor se-

ries development 
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around the origin[24]. We know that a solution of unva-
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Let us now multiply j th row in ( )p x  and ( )q x  by 
1j mx + −  ( 2,..., 1)j n= +  and afterwards divide j th column in 

( )p x  and ( )q x  by 1jx − ( 2,..., 1)j n= + . This results in a 

multiplication of numerator and denominator by mnx . 

Having done so, we get 
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if ,( det 0)m nD D= ≠ . 

This quotent of determinants can also immediately be 

written down for a bivariate function ( , )f x y . The sum 
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ries development of ( , )f x y  and the expression k

k
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an expression that contains all the terms of degree k  in 

( , )f x y . Here a bivariate term i j

ij
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Then it is easy to see that ( , )p x y  and ( , )q x y  are of the 
form 
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We know that ( , )p x y  and ( , )q x y  are called Padé equa-
tions[24]. So the multivariate Padé approximant of order 
( , )m n  for ( , )f x y  is defined as 

,
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4. Applications and Results 

In this section, the two methods VIM and MPA wil be 
illustrated by two examples. All the results are calculated 
by using software mapple. 

Example 4.1. 

Consider the one-dimensional heat equation with varia-
ble coefficients 

2
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2

t xx

x
u x t u x t− =                            (15) 

and the initial condition 2( , 0)u x x= . The variational ite-

rational schema of equation (15) has the form[25] 
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where 0n ≥  and 2
0 ( , )u x t x= . This yields the stationary 

conditions 
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s t

λ
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Hence, the Lagrange multiplier is 

 1.λ = −                                       (18) 

Substituting this value of the Lagrange multiplier into 
the functional (16) gives the iteration formula[25] 
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Ali and Raslan obtained [25] the folowing succesive ap-
proximations, starting with an initial approximation: 

 2
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and using the iteration formula (19), 
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The exact solution is given as 2( , ) tu x t e x=  in [28]. Now 

let us calculate the approximate solution of Eq.(20) for 
6m =  and 2n =  by using Multivariate Padé approximation. 

To obtain Multivariate Padé equations of Eq.(20) for 
6m =  and 2n = , we use Eqs.(11) and (12). By using 

Eqs.(11) and (12) We obtain, 
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So the Multivariate Padé approximation of order (6, 2)  

for eq.(20), that is 
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Example 4.2. 

Consider the one-dimensional wave equation with varia-
ble coefficients 
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with initial conditions 2( ,0) , ( ,0)tu x x u x x= = . The cor-

rection functional for equation (22) is given as[25] 
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where 0n ≥  and 2
0 ( , )u x t x tx= + . Then, the stationary 

conditions are 
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functional (23) gives the iteration formula [25] 
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Selecting the initial approximation: 2
0 ( , )u x t x tx= + , with 

the itration Formula (26), Ali and Raslan obtained [25] the 
following succesive approximations 
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The exact solution is given as 2( , ) sinhu x t x x t= +  in [28]. 

Now let us calculate the approximate solution of Eq.(20) 
for 11m =  and 2n =  by using Multivariate Padé approxima-
tion. To obtain Multivariate Padé equations of Eq.(20) for 

11m =  and 2n = , we use Eqs.(11) and (12). By using 
Eqs.(11) and (12) We obtain 
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for eq.(27), that is 
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Figure 1. Exact solution of partial differential equation in example 1. 

 
Figure 2. Multivariate Padé approximation for VIM solution of partial 

differential equation Example 1. 

Table 1. Comparison of VIM and MPA for example 1. 

x t Exact solution 
Approximate 

solution withMPA 

Absolute error of 

MPA 

1.0 1.0 2.718281828 2.718253968 0.000027860 

0.9 0.9 1.992278520 1.992268535 50 .9 9 8 5 1 0 −×  

0.8 0.8 1.424346194 1.424342992 50.3202 1 0 −×  

0.7 0.7 0.9867388264 0.9867379342 60.8922 10−×  

0.6 0.6 0.6559627680 0.6559625616 60.2064 10 −×  

0.5 0.5 0.4121803178 0.4121802805 70.373 10−×  

0.4 0.4 0.2386919517 0.2386919470 80 . 4 7 1 0 −×  

0.3 0.3 0.1214872927 0.1214872923 90.4 10−×  

0.2 0.2 0.04885611032 0.04885611032 0.0 

0.1 0.1 0.01105170918 0.01105170918 0.0 

Table 2. Comparison of VIM and MPA for example 2. 

x t Exact  solution 

Approximate 

solution with-

MPA 

Absolute error of 

MPA 

-2.0 -2.0 12.50744163 12.50744401 50.238 10−×  

-1.9 -1.9 9.89806811 9.898069207 50.110 10−×  

-1.8 -1.8 7.732644693 7.732645177 60.484 10−×  

-1.7 1.7 5.945876289 5.945876494 60.205 10−×  

-1.6 -1.6 4.481453960 4.481454042 70.82 10−×  

-1.5 -1.5 3.290878774 3.290878805 70.31 10−×  

-1.4 -1.4 2.332430942 2.332430954 70.12 10−×  

-1.3 -1.3 1.570266319 1.570266322 80.3 10−×  

-1.2 -1.2 0.973624351 0.9736243524 80.1 10−×  

-1.1 -1.1 0.516133439 0.5161334388 0.0 

-1.0 -1.0 0.175201194 0.1752011937 0.0 

 
Figure 3. Exact solution of partial differential equation in example 2. 
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Figure 4. Multivariate Padé approximation for VIM solution of partial 

differential equation in Example2. 

5. Conclusion 

The figure which is obtained using MPA and the figure 
of the exact solution in three-dimensional are shown in 
figure (1-2) and figure (3-4). As can be seen in table 1, 
table 2 and figure (1-2), figure (3-4), the approximation 
solutions with MPA are quite close to exact solutions. It is 
also observed that MPA is robust and applicable to various 
types of partial differential equations. 
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