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Abstract: Krylov-Bogoliubov-Mitropolskii (KBM) method has been extended to certain damped-oscillatory nonlinear 

systems with varying coefficients. The solution obtained for different initial conditions for a second order nonlinear system 

show a good coincidence with those obtained by numerical method. The method is illustrated by an example. 
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1. Introduction 

Krylov and Bogoliubov [1] developed a perturbation 

method to obtain an approximate solution of a second order 

nonlinear differential system described by 

),,(2
0 xxfxx ɺɺɺ εω −=+                                    (1) 

where the over dots denote the differentiation with 

respect to t , 0ω  is a positive constant and ε  is a small 

parameter. Then the method was amplified and justified by 

Bogoliubov and Mitropolskii [2]. Mitropolskii [3] has 

extended the method to nonlinear differential system with 

slowly varying coefficients  
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Following the extended Krylov-Bogoliubov-

Mitropolskii (KBM) [1-4] method, Bojadziev and Edwards 

[5] studied some damped oscillatory and non-oscillatory 

systems modeled by 

),,,().().( 2 τετωτ xxfxxcx ɺɺɺɺ −=++                      (3) 

where )(τc  and )(τω  are positive.  Murty [6] has 

presented a unified KBM method for both under-damped 

and over-damped system with constant coefficients. 

Shamsul [7] has presented a unified method for solving an 

n-th order differential equation (autonomous) characterized 

by oscillatory, damped oscillatory and non-oscillatory 

processes. Hung and Wu [8] obtained an exact solution of a 

differential system in terms of Bessel’s functions where the 

coefficients varying with time in an exponential order. 

Recently, Roy and Shamsul [9] found an asymptotic 

solution of a differential system in which the coefficient 

changes in an exponential order of slowly varying time. In 

another recent article Pinakee et.al [10] has presented an 

extended KBM for solving nonlinear problems in which 

the coefficients change slowly and periodically with time. 

The aim of this paper is to extend the result in [10] to 

similar nonlinear vibrating problems in which damping 

forces act. 

2. Meterials and Method 

Let us consider the nonlinear differential system 

1 2 32 ( ) ( cos sin )

( , , ),

x k x c c c x

f x x t

τ τ τ
ε τ τ ε

+ + + + =
= − =
ɺɺ ɺ

ɺ
               (4) 

where the over-dots denote differentiation with respect to t, 

ε  is a small parameter, 21 , cc and 3c  are constants,

)(32 εΟ== cc , tετ =  is the slowly varying time, 

,0)( ≥τk  f  is a given nonlinear function. Setting 

)sincos()( 321
2 τττω ccc ++= , )(τω  is known as 

frequency. The coefficients in Eq. (4) are slowly varying in 

that their time derivatives are proportional toε . 

Setting 0=ε  and 0ττ = = constant, in Eq.(4), we obtain 

the unperturbed solution of (4) in the form  
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Let Eq.(4) has two eigenvalues, 2,1),( 0 =jj τλ , where 

)( 0τλ j  are constants, but when )(,0 τλε j≠  vary with 

time. When 0≠ε  we seek a solution in accordance with 

the KBM method, of the form  
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where 1a  and 2a satisfy the differential equations 
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Confining our attention to the first few term m,,2,1 …  in 

the series expansion of (6) and (7), we evaluate functions 

11 , Au  and 2A such that 1a  and 2a  appearing in (6) and (7) 

satisfy (4) with an accuracy of 1+mε . In order to determine 

these unknown functions it was early assumed by Murty 

[6], Shamsul [7] that the functions 1u exclude all 

fundamental terms, since these are included in the series 

expansion (6) at order 0ε . 

Differentiating ),( εtx two times with respect to t, 

substituting for the derivatives xɺɺ , xɺ  and x in the original 

equation (4) and equating the coefficient of ε , we obtain  
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 It is assumed that both 
)0(f  can be expanded in 

Taylor’s series [6-7] 
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KBM [1-4], Murty [6], Shamsul [7] imposed the 

condition that 1u  does not contains the fundamental terms 

(the solution (5) is called generating solution of (4) and its 

terms are called fundamental terms) of 
)0(f  . Therefore, 

equation (8) can be separated into three equations for 

unknown functions 1u  and 21 , AA   (see Shamsul [7] for 

details). We obtain 
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and 
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where ),( 21

21

21 21

,

0,0

,
rr

rr

rr aaF∑
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==
 exclude those terms for 

121 ±= rr . 

Thus the particular solutions of (10),(11) and (12) give 

the values of the unknown functions 21 , AA  and 1u  which 

completes the determination of the solution of non-linear 

problem (4). 

Example:  We consider a second order nonlinear system 

with slowly varying coefficients 

3
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2
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Here over dots denote differentiation with respect to t . 

21, cc  and 3c  are constants, )(32 εΟ== cc , 

210 aax +=  and the function 
)0(f  becomes, 
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Following the assumption (discussed in section 2) 
1u  

excludes the terms 
2

2

13 aa  and 
2

213 aa . 

We substitute in (8) and separate it into two parts as 
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The particular solution of (16) is 
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Now we have to solve (15) for two functions 
1A  and 

2A . According with the unified KBM method 
1A  contains 

the term 
2

2

13 aa  and 
2A  contains the term 

2

213 aa  

(Shamsul [7]) and thus we obtain the following equations 
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The particular solutions of  (18) and (19) are 
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Substituting the functional values of 1A , 2A  from (20) 

and (21) into (7) and rearranging, we obtain 
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Under the transformations, 2/1
ϕiaea =  and 

2/2

ϕiaea −=  together with ωλ ik +−=1 , ωλ ik −−=2  

equations (22) and (23) reduce to  
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and 

...)(
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1 εεωϕ ++= aBɺ                             (24) 

We shall obtain the variational equations of a  and ϕ  in 

the real form ( a  and ϕ  are know as amplitude and phase 

respectively) which transform (24) to  
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where  ττω sincos 321 ccc ++=  

The variational equations (25) and (26) are in the form 

of the KBM [1-4] solution. The variational equations for 

amplitude and phase are usually appeared in a set of first 

order differential equations and solved by the numerical 

technique (see Shamsul [7]). 

Therefore, the first order solution of the equation (13) is 

 1cos),( uatx εϕε +=                       (27) 

where a  and ϕ  are the solution of the equation (25) 

and (26) respectively. 

3. Results and Discussions 

Based on the extended KBM [1-4] method an asymptotic 

solution of second order damped nonlinear systems has 

been found in this article. In order to test the accuracy of an 

approximate solution obtained by a certain perturbation 

method, one compares the approximate solution to the 

numerical solution (considered to be exact). With regard to 

such a comparison concerning the presented KBM method 

of this article, we refer to the works of Murty [6], and 

Shamsul [7]. In our present paper, for different initial 

conditions, we have compared the perturbation solutions 

(27) of Duffing’s equations (13) to those obtained by 

Runge-Kutta Fourth-order procedure. 

First of all, for damping force τcos002.− , i.e., 

τcos001.=k , x  is calculated by (13) with initial 

conditions ]00000.0)0(,00000.1)0([ == xx ɺ  or 

001161.,000001.1 −== ϕa , 1.=ε  and 

.)sincos( 3210 ττωω ccc ++=  Then corresponding 

numerical solutions is also computed by Runge-Kutta 

fourth-order method. All the results are shown in Fig.1. 

From Fig.1 it is clear that the asymptotic solution (27) 

shows a good coincidence with the numerical solution of 

equation (13). We have find the approximate solutions of 

the same problem for damping force τcos02.− , i.e., 

τcos01.=k  with initial conditions 

]00000.0)0(,00000.1)0([ == xx ɺ  or 

009277.,000043.1 −== ϕa , 1.=ε  and 

)sincos( 3210 ττωω ccc ++= , for damping force 

τcos1.− , i.e., τcos05.=k  with initial conditions  

]00000.0)0(,00000.1)0([ == xx ɺ  or 

046354.,001075.1 −== ϕa  for 1.=ε  and 

)sincos 3210 ττωω ccc ++=  and for damping force

τcos2.− , i.e., τcos1.=k  with intial conditions 
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]00000.0)0(,00000.1)0([ == xx ɺ  or 

092516.,004295.1 −== ϕa  for 1.=ε and 

)sincos 3210 ττωω ccc ++= . The corresponding 

numerical solutions have also been computed by Runge-

Kutta fourth-order method. From Fig. 2 ,Fig. 3 and Fig. 4 

we observe that the approximate solutions agree with 

numerical results nicely. 

 

Fig. 1. Perturbation solution (dotted line) with corresponding numerical 

solution (solid line) are plotted with initial conditions 

001161.,000001.1 −== ϕa  

[ 00000.0)0(,00000.1)0( == xx ɺ ] for .,05.,1. == he  with 

damping coefficient is τcos001.=k
.
 

 

Fig. 2. Perturbation solution (dotted line) with corresponding numerical 

solution (solid line) are plotted with initial conditions 

009475.,000045.1 −== ϕa  

[ 00000.0)0(,00000.1)0( == xx ɺ ] for .,05.,1. == he  with 

damping coefficient is τcos01.=k
.
 

 

Fig. 3. Perturbation solution (dotted line) with corresponding numerical 

solution (solid line) are plotted with initial conditions 

046395.,001077.1 −== ϕa  

[ 00000.0)0(,00000.1)0( == xx ɺ ] for ,05.,1. == he  with 

damping coefficient is τcos05.=k
.
 

 

Fig. 4. Perturbation solution (dotted line) with corresponding numerical 

solution (solid line) are plotted with initial conditions 

092362.,004281.1 −== ϕa  

[ 00000.0)0(,00000.1)0( == xx ɺ ] for ,05.,1. == he  with 

damping coefficient is τcos1.=k
.
 

4. Conclusion 

The KBM method is extended and used to obtain 

asymptotic solutions of the nonlinear vibrating systems 

under the action of several damping forces, where the 

coefficients change slowly with time. The method is a 

generalization of the asymptotic KBM method. The 

derivation of the present formula is quite different from the 

classical KBM method. A direct attempt to obtain the 

general formulae is a tremendously-difficult task, which is 

not practical. Where as the present method is systematic 

and easy to understand. Therefore, the formulation, as well 

as the determination, of the solution is much simpler than 

that of KBM technique in both damped and un-damped 

cases. 

Fig. 1
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