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Abstract: This paper presents a qualitative evaluation of wave-induced motions in an oil-rig drill ship positioning system 

which incorporates a priori knowledge of noise contamination in the measured data. The noise contamination β defined in the 

function of the known form (P(X, β)) and X takes the specific values z, which from Cramer-Rao bound, gives the smallest 

possible variance with which the estimate of β can be determined. A conceptual model of the problem based on the maximum 

likelihood techniques in terms of joint probability distribution functions enhanced convergence of the iteration process. A filter 

was postulated to define the error covariance matrix which yielded unbiased estimates of the measured data. 
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1. Introduction 

Noise attenuation in oil-rig drill ship positioning systems 

has been addressed severally by recourse to filter design [1] 

[2] and control system modelling assuming all the noise 

processes are independent, and the filter designed to give a 

minimum variance estimate. This reduces the problem to one 

of optimal control whereby the best estimate using the 

measured values of the input and output of the system are 

required. Because measurements invariably contain errors [3] 

[4] [5]; the approach to the problem utilizes concepts of 

probability and statistics in which state estimation is 

addressed because noise is usually known to be correlated 

with the measured data [6] [7]. 

In an exploration method by acoustic means, [8] employed 

digital filtering and signal processing to establish a 

guaranteed data interpretation of the liquid level position in 

noisy well bores. Signal filtration in this application provides 

additional processing techniques under operator control to 

obtain accurate results in oil wells with shallow liquid levels 

and noisy well bores. This is enhanced by inclusion of an 

analogue filter [8] [9] to reduce the interference from signals 

generated by the reflections at the tubing collars, and to 

ensure that the liquid level signal could be detected in the 

majority of the cases. Here, the fundamental objective is 

markedly enhanced by increasing the signal-to-noise ratio in 

the recorded data. One method of doing this is to filter 

measured values to reject undesirably high frequency 

components [8] [9]. This is achieved by passing the 

measurements through simple low-pass filters before 

connecting to the input. The cut-off frequency of the filter 

would then be selected in conjunction with the sampling and 

conversion rates in order to satisfy a given sampling 

requirement while preserving the signal components of 

interest. 

In digital signal processing [8] [9] [10] [11] [12], the 

Analogue-to-Digital Converter (ADC) gives high resolution 

of the data based on continuous integration and 

oversampling in combination with carefully designed low-

pass filters (fig. 1) which eliminate gaps in the sampling 

process. The negative feedback from the output (fig. 1) 

along the 1 bit−  Digital-to-Analogue Converter (DAC) and 
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the sum amplifier at the input are performed at a high 

sample rate, transferring the quantization noise into the stop 

band of the digital low-pass filter, for decimation. In the 

process, the sampled analogue signal is fed to the sum 

amplifier along with the output of the 1 bit−  Digital-to-

Analogue Converter (DAC). The integrated difference 

signal is fed to the strobed comparator whose output 

samples the difference signal at the sampling frequency 

many times that of the analogue signal frequency. The 

output of the comparator provides the digital input for the 

1 bit−  Digital-to-Analogue Converter (DAC). Thus, the 

system functions on a negative feedback loop which 

minimizes the difference signal by tracking the input. The 

integrator is continuously fed with the differential signal 

and there are no gaps in the analogue input signal as 

introduced by sample and hold devices. The digital 

information representing the analogue input voltage was 

coded in the polarities of the pulse train appearing at the 

output of the comparator which can be retrieved as a 

parallel binary data word applying a digital filter operator. 

 

Fig. 1. A Continuous Sampling Signal Modulator [8]. 

The Kalman filter has received considerable attention in 

the existing literature [2] [13] [14] [15] [16] and has been 

applied in wave-induced motions of ships [17]. Given a 

signal model that consists of a linear dynamic system driven 

by stochastic white noise processes, the Kalman filter [2] 

[18] exploits a state space model for optimal filtration of 

noisy measurements. A precursor to the Kalman filter was the 

Weiner filter which was derived independently by Weiner 

and Kolmogorov [19] and which gives a method of optimally 

attenuating noise in process measurements. However, the 

Weiner filter is limited to time-invariant problems involving 

stationary noise sequence. The purpose of this study was to 

develop a statistical quality control scheme for measurements 

of position and heading of a ship in wave-induced motions, 

and to show that a filter can be postulated to define a 

covariance matrix to yield unbiased measurements. 

2. Formulation of the Problem 

Generally, estimation of process variables contaminated 

with noise is formulated on the basis of maximum 

likelihood [17] [2] using statistical information in terms of 

joint probability distribution functions. When the additive, 

zero-mean white Gaussian measurement noise is defined in 

terms of mean values and variances, which will be 

appropriate for many practical applications, the least-

squares solution is formulated as a deterministic problem 

[20] [21] [22] with appropriate weighting that leads to the 

maximum likelihood estimate. The ship dynamics 

considered in this study were assumed to be completely 

controllable and observable. The autopilot maintains the 

ship on a set or desired heading while being subjected to 

disturbances such as wind, waves and current. The main 

elements of the autopilot system are shown in fig. 2. The 

actual heading is measured by a gyro-compass (or magnetic 

compass in a smaller vessel), and compared with the 

desired heading, dialed into the autopilot by the ship’s 

master. The autopilot, or controller, computes the demanded 

rudder angle and sends a control signal to the steering gear. 

The actual rudder angle is monitored by a rudder angle 

sensor and compared with the demanded rudder angle, to 

form a control loop. 

 

Fig. 2. Ship Autopilot Control System [23]. 

The rudder provides a control moment on the hull to drive 

the actual heading towards the desired heading while the 

wind, waves and current produce noise moments that may 

help or hinder this action. The block diagram of the system is 

shown in fig. 3. 

 

Fig. 3. Block Diagram of Ship Autopilot Control System [23]. 

For the purpose of this study, the ship dynamics were 

represented by a linear discrete-time process using the 

difference equation [24] [1]. 

( ) ( ) ( ) ( ) ( )1x k A k x k B k u k+ = + , ( ) 00x x=           (1) 

where ( )u k  is an r-dimensional random vector process with 

the following statistical properties 

( ) ( )E u k m k  =                                  (2) 
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( ) ( ) ( ) ( ) ( )1 1 2 2 2 1,
T

E u k m k u k m k K k k   − − =            (3) 

( ) ( ) ( ) ( ) ( )
1

0

0

, 0 , 1
k

i

E x k k x k i B i E u iϕ ϕ
−

=

   = + +   ∑      (4) 

The analytical approach which often has some 

computational advantages is to derive a deterministic 

equation whose solutions are the desired mean and 

covariance matrix of ( )x k . Taking the expectation of both 

sides of (1) yields 

( ) ( ) ( ) ( ) ( )1E x k A k E x k B k E u k     + = +      , ( ) 00E x x  = 
   (5) 

This is a deterministic linear difference equation which 

yields as its solution the expected value of ( )x k . To derive 

the covariance of ( )x k , we subtract (5) from (1) to obtain 

( ) ( )1 1x k E x k + − +   and then postmultiply both sides of 

the resulting equation by ( ) ( )1 1
T

x x E x k  + − +    and then 

take the expectations of both sides. 

3. Maximum Likelihood Estimate 

Estimation of the process considered in this study was 

based on the assumption that some or all of the parameters 

may be unknown even though the structure of the differential 

equation characterizing the system as well as the initial and 

boundary conditions may be available. This reduced the 

problem to one of optimal control whereby the best estimate 

using the measured values of the input and output the system 

are required. Because measurements invariably contain 

errors, solution of the problem should utilize concepts of 

probability and statistics in which the problem should also 

address state estimation because noise is usually known to be 

correlated with the measured data. This must be estimated at 

the same time as the parameters during which filtration is 

mandatory in the processing of the data. Computation of the 

optimal estimates should consequently rely on convergence 

of the iteration employed, which is accomplished through 

sequential filtration of the estimate. 

We considered a time-series model of the form [25] 

( )x j
1 0

( ) ( )
m m

i i

i i

x j i b u j iα
= =

+ − = −∑ ∑                   (6) 

The partial fraction expansion required for obtaining a 

time solution to (6) is defined for distinct roots using the 

method of residues, as 

1 1

( )
( )

mk
vk

k
v k v

Y s
s

σ α
σ= =

=
−∑∑                            (7) 

where 
1
...

k
α α  are the poles of the function ( )Y s  with 

multiplicities 
1
...

k
m m . 

The inversion integral was then written in the form 

1

1 1

1
( ) ( )

2 ( 1)!

v

v

i mk
tst kvk

v ki

C
y t Y s e ds t e

i k

σ
σ

σπ

+ ∞
−

= =− ∞

= =
−∑∑∫ , 0t >     (8) 

so that the function ( )Y s  with contaminated noise becomes 

1

( ) ( )
n

i

i i

Y s U s white noise
s

β
α=

 
= + + 
∑              (9) 

where iα , iβ  are the parameters of the system, and n is the 

order of the system 

Using the shift operator 1z−  defined by 1 ( ) ( 1)z x j x j− = − , 

equation (6) becomes 

1 1

1 1

( ) ( )
( ) ( ) ( )

( ) ( )

B z c z
y j u k e k

A z A z
λ

− −

− −= + , 1,...,k N=       (10) 

where ( )y k  is the observed output signal, ( )u k  is the 

applied input signal, N is the number of samples and ( )e t  is 

the noise sequence. The polynomial operators A, B, and C are 

defined as follows 

1

1

( ) 1 '
NA

i

i

i

A z zα− −

=
= +∑  

1

1

( ) '
NB

i

i

i

B z b z
− −

=
=∑  

1

1

( ) 1 '
NC

i

i

i

C z c z
− −

=
= +∑                        (11) 

If the continuous model in (4) is discretized we shall 

obtain a discrete time model of the form 

1

1
1

( ) ( ) ( )
1

n
i

i i

b z
y k u k e k

a z
λ

−

−
=

= +
+∑                  (12) 

where the parameter set a, b is related to the parameter set 

α , β  via the relation 

exp( )i ia Tα= − −  

and 

(1 exp( ))i
i i

i

b T
β α
α

= − −                       (13) 

where T is the sampling interval in seconds. The infinite 

noise of the discrete observations due to aliasing that may 

result from the above discretization process is negligible. 

This is justified if ( )u k  and ( )e s  are independent of all k 

and s. This is a reasonable assumption as long as the 

identification is performed for data acquired from 

experiments, where ( )u k  is a priori known sequence. In 

some practical situations, this assumption is often violated 

when operating records are used because in such a case the 

input may depend on the output through feedback. 
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The canonical model in (10) was made equivalent to the 

discrete-time model of (12) by satisfying the conditions 

(i) ' '
i i

c a=  

(ii) 
11

1 1
1

( )

( ) 1

n
i

i i

b zB z

A z a z

−−

− −
=

=
+∑             (14) 

The statistical method of maximum likelihood was 

employed to optimize the probability of obtaining the 

expected result. Consequently, a loss function ( )V θ  was 

defined as follows 

2

1

1
( ) ( )

2

N

k

V kθ ε
=

= ∑                      (15) 

which will be minimized with respect to the system 

parameter set [ ]', 'a bθ = . The residues were defined by 

1

1

( )
( ) ( ) ( )

( )

B z
k y k u k

A z
ε

−

−= −                       (16) 

so that the values of the parameter set a’ and b’ that make 

( )V θ  in (15) minimum will be the estimates of the 

parameters of the system. The approach considered is one of 

finding the coefficients of the prediction model 

( )
( ) ( ) ( ) ( )

( ) ( )
1 1 1

1 11

B z C z A zk
y u k y k

k C z c z

− − −

− −

−  = + − 

⌢

      (17) 

so that the mean square prediction error 

( ) ( ) ( )
2

2

1 11

N N

k k

k
V y k y k

k
θ ε

= =

 = − = − 
∑ ∑

⌢

          (18) 

is as small as possible. By doing so the assumption of 

Gaussian distribution of the noise sequence ( )kε  may be 

relaxed. In the model given in (12), the residues were 

obtained as 

( ) ( ) ( )
1

1
1 1

n
i

i i

b z
k y k u t

a z
ε

−

−
=

 
= −  + 

∑                      (19) 

For system order greater than n, ( )kε  as given in (19) 

becomes computationally difficult and highly nonlinear, 

whereas in the model of (12), the residues given by (16) may 

be computed quite easily for any given system order. Since 

the two models are equivalent via the transformations defined 

in (8), we are free to use any of them. Thus the form of 

residues given in (16) is recommended and used in this study 

for parameter estimation; application of a filter for signal 

noise attenuation becomes evident. 

Now, if there exists an unknown parameter β  defined in 

the function of the known form ( )( ),P X β  and X  takes the 

specific values z , Cramer-Rao bound gives the smallest 

possible variance with which an estimate of β  can be 

determined. Now, let ( )ĝ z  be an unbiased estimate of the 

given function ( )g β . Since it is unbiased, we write 

( ) ( )ˆE g z g β  =                                 (20) 

i.e., 

( ) ( ) ( )ĝ z P z dx g β
+∞

−∞

=∫                        (21) 

Since z  was drawn from the process which generated X , 

it has the same probability density function 

( ) ( ) ( ), ,
x z

p z P X L zβ β
=

= =              (22) 

Re-writing (12) 

( ) ( ) ( )ˆ ,g z L z dz gβ β
+∞

−∞

=∫                        (23) 

Differentiating with respect to β  gives 

( ) ( )ˆ
L dg

g z dz g
d

β
β β

+∞

−∞

 ∂ ′= = ∂ 
∫                    (24) 

Since ( ),L z β  is a probability function 

( ), 1L z dzβ
+∞

−∞

=∫                                 (25) 

and its differential with respect to β  is zero, that is, 

0
L

dz
β

+∞

−∞

∂ =
∂∫

                                  (26) 

then 

( ) 0
L

g dzβ
β

+∞

−∞

∂ =
∂∫                             (27) 

Substituting (21) from (24) gives 

( ) ( ) ( )ˆ
L

g z g dz gβ β
β

+∞

−∞

∂ ′ − =  ∂∫                 (28) 

We now consider the log-likelihood function as follows: 

( ) ( ), log ,eL z L zβ β=                            (29) 

1L L

Lβ β
∂ ∂=
∂ ∂

                                    (30) 

Substituting in (25) gives 
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( ) ( ) ( )ˆ
L

g z g L dz gβ β
β

+∞

−∞

∂ ′ − =  ∂∫                   (31) 

Now from, the Schwartz inequality 

( ) ( ) ( )( )
2

2 2

ˆ
L

g z g Ldz Ldz gβ β
β

+∞ +∞

−∞ −∞

    ∂   ′ − ≥     ∂      
∫ ∫   (32) 

where 

( ) ( ) ( )2

ˆ ˆg z g Ldz Var g zβ
+∞

−∞

  
 − =  

  
∫            (33) 

and 

2 2

L L
Ldz E

β β

+∞

−∞

      ∂ ∂ 
 =    ∂ ∂        

∫                (34) 

Thus for any unbiased estimate the lower bound on the 

variance of the estimate is given by Cramer-Rao bound as 

follows: 

( ) ( ) 2

2
ˆ

g
Var g z

L
E

β

β

′  ≥
  ∂
  ∂   

                    (35) 

If ( )ĝ z  is an unbiased estimate of β , i.e., ( )g β β=  

Therefore 

( ) 1
dg

g
d

β
β

′ = =                            (36) 

2

1ˆVar

L
E

β

β

  ≥    ∂
  ∂   

                        (37) 

4. Application 

In an oil-rig drill ship positioning system which 

incorporates a priori knowledge of noise contamination in the 

measured data, it is required to obtain an estimate of the 

mean value of the position of the ship based on independent 

measurements ( )1 2, ,..., NX x x x  with the time between 

successive data acquisition to be distributed with a 

probability function of the form 

( )
2

1
1 2

21

1 1
; , exp

22

x Q
P X Q Q

QQ π

  −
 =  
   

           (38) 

which describes the probability that the parameters 
1

Q  and 

2
Q  caused the measurements ( )1 2, ,..., NX x x x  to occur. 

Here, we obtained an estimate of the mean position of the 

ship and expressed it as a product of the individual functions: 

( ) ( )1 2 1 2 1 2

1

, , ... / , , ..., , ,... /
N

N i

i

L Q Q x x x L Q Q x
=

= ∏  

2 2

1 1 2 1

2 22 2

1 1 1 1
exp exp ...

2 22 2

x Q x Q

Q QQ Qπ π

        − −     =      
             

 

( )
2

1

1 2
2

1 1
exp

22

N
i

N
i

x Q

QQ π =

  −
 =  
   
∑           (39) 

For covariance, we define the log-likelihood function 

( ) ( )1 2 1 2 1 2 1 2, , ... / , , ..., log , , ..., / , , ...,N e NL Q Q x x x Q Q x x x=  

( )
2

1

2

1 2

1
log log 2

2

N
i

e e

i

x Q
L N Q

Q
π

=

 −
= = − −  

 
∑     (40) 

which we maximized with respect to 
1 2
,Q Q  by equating to 

zero the partial derivatives of L  as follows: 

( ); 1 2

1

1 1

log , ,...

0

N

e i

i

P x Q Q
L

Q Q

=

∂
∂ = =
∂ ∂

∑
            (41) 

and 

( ); 1 2

1

2 2

log , ,...

0

N

e i

i

P x Q Q
L

Q Q

=

∂
∂ = =

∂ ∂

∑
            (42) 

Maximizing with respect to 1Q  and 2Q  gives 

( )12
11 2

1 N

i

i

L
x Q

Q Q =

∂ = −
∂ ∑                               (43) 

( )
2

12
12 2 2

1 N

i

i

L N
x Q

Q Q Q =

∂ = + −
∂ ∑                    (44) 

Letting 
1 2

0
L L

Q Q

∂ ∂= =
∂ ∂

 gives the maximum likelihood of 

the estimates as follows 

1

1

1ˆ
N

i

i

Q x x
N =

= =∑                                   (45) 

( )
1

22

2

1

1ˆ
N

i

i

Q x x
N =

 = − 
 
∑                        (46) 

From the Cramer-Rao bound 



64 E. C. Obinabo et al.:  A Deterministic Approach to Measurement of Noise Attenuation in  

Oil-Rig Drill Ship Positioning Systems 

( ) 2

2

1ˆVar
L

E

β

β

= −
 ∂
 ∂ 

                     (47) 

we obtained, for 
1
,Q  

2

2 2

1 2

L N

Q Q

∂ = −
∂

                              (48) 

so that 

2

2

1

2

2

1ˆ Q
Var Q

NN

Q

  ≥ − =   
− 
 

                      (49) 

showing that the estimate is consistent with N → ∞  as 

1
ˆ 0Var Q  →  . 

The wave-induced motions of a ship considered in this 

paper was concerned essentially with measurements which 

are correlated with coloured noise assumed to be additive to 

the output. 

 
Fig. 4. Block Diagram of Ship Dynamics System. 

The modelling of (19) was enhanced using the discrete-

time stochastic sequence as follows 

( ) ( ) ( )
1 1

1 1

Bz Dz
y k u k k

Az Cz
η

− −

− −= +                 (50) 

Multiplying through (50) by 1Az− : 

AD
Ay Bu

C
η= +                           (51) 

i.e., 

Ay Bu e= +                                   (52) 

where ( )1e ADC kη−=  is the correlated noise sequence (53) 

In matrix form we write (50) as follows 

eγ ϕβ= +                                     (54) 

Using least squares: 

( ) 1
ˆ T Tβ ϕ ϕ ϕ γ

−
=  

( ) ( )1
T T

eϕ ϕ ϕ ϕβ
−

= +  

( ) 1
T T

eβ ϕ ϕ ϕ
−

= +                               (55) 

( )ˆT T eϕ ϕ β β ϕ− =                          (56) 

Taking the expected values of both sides of (50) gives: 

( )ˆT TE E eϕ ϕ β β ϕ   − =   
                   (57) 

Since ( )y k  depends on ( )e k  then [ ]:u yϕ =  and e are 

correlated. 

Thus 

0
T

E eϕ  ≠                                 (58) 

Therefore the least square estimates of β̂  are biased. 

From (55), 

( ) 1
ˆ T TE E eβ β ϕ ϕ ϕ

−
   = +                      (59) 

An unbiased estimate of β  can only be obtained if the 

noise sequence ( )e k  is reduced to a white noise sequence. In 

order to reduce the noise sequence to a white noise sequence, 

we considered (51) and postulated a filter F [19] [17] such 

that 

( )1 1 1

1 21 ...F z f z f z− − −= + + +                     (60) 

We then obtained: 

( ) ( ) AD
A Fy B Fu F

C
η = +  

 
                     (61) 

Now, we chose 
C

F
AD

=  so that (61) becomes: 

( ) ( )A Fy B Fu η= +                                   (62) 

thereby reducing the additive noise 
AD

e
C

η = 
 

 to a white 

noise sequence η . The least square estimate β̂  is now 

unbiased. Fu and Fy are filtered inputs and outputs. 

Fu Fu= ; Fy Fy=                             (63) 

5. Conclusions 

A stochastic time-invariant model has been developed for 

linear filtering and prediction of state in wave-induced motions 

of a ship. The model provides a processing technique under 
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operator control for eliminating the interference from signals 

generated by the wave-induced motion. The result presented 

has shown that the wave-induced motions of an oil-rig drill 

ship positioning system which incorporates a priori knowledge 

of noise contamination in the measured data can be estimated 

using the maximum likelihood techniques in terms of joint 

probability distribution functions. The ship dynamics itself is 

represented by a stable, linear, parameter-dependent state 

model. 
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