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Abstract: In this paper, a new approach of designing robust adaptive backstepping controller for horizontal position control 

of a rotary wing autonomous unmanned vehicle (RAUV) with consideration of parametric uncertainties and external 

disturbances is proposed. Based on this new approach, the proposed RAUV controller is adaptive to the parametric 

uncertainties and robust to the external disturbances. To prove the convergence of different tracking error to zero, a control 

Lyapunov function (CLF) is formulated in every step of the design process of controller and which is guaranted through the 

negative definiteness of the derivative of CLF. At last, a numerical evaluation is performed on a highly fedility nonlinear 

simulation model to justify the usefulness of the proposed controller. The performance of the designed controller is also 

compared with a classical PID controller. Simulation results demonstrate that the proposed controller provides an improved 

performance for the closed-loop system in the presence of parametric and external uncertainties within the UAH model over 

the existing controller. 

Keywords: Adaptive Robust Backstepping Controller, Control Lyapunov Function, External Disturbance,  

Rotary Wing Autonomous Vehicle, Parametric Uncertainty 

 

1. Introduction 

There are variety of rotary wing unmanned autonomous 

vehicles (RUAV), but among these the unmanned 

autonomous helicopters (UAHs) constitute one of the most 

versatile and agile platforms for the development of 

autonomous flight systems. A small-scale unmanned 

helicopter can operate in different flight modes, such as 

vertically take-off/landing, hovering, longitudinal or lateral 

flight, and bank to turn which gives them the advantage of 

effective observation from various positions. Hovering and 

vertically take-off are necessarily needed. Nowadays, there 

are new trends of UAH controller design due to their high 

level of agility, maneuverability and capability of operating 

in adverse weather conditions. To achieve these 

performances of an UAH, the trajectory tracking and 

disturbance rejection capability need to be significantly 

improved. But the problem is that it is a naturally unstable 

system with nonlinear dynamics. The main difficulties of an 

UAH are higher nonlinearities which arise from the cross-

couplings due to the tail rotor, main rotor, engine and 

dynamic uncertainties [1]. Besides, it is an underactuated 

mechanical system with six degrees of freedom (6-DOF) 

because it has only four control inputs. To cope such 

problems as mentioned above, different approaches have 

been proposed by the researchers in literature [2]-[4]. Thus, 

in order to improve the tracking performance of an UAH in 

the presence of parametric and external uncertainties within 

the system a robust adaptive backstepping controller is 

proposed in this paper. 

Different conventional controllers are available to stabilize 

to flight of an UAH which are designed on the linear 

approximation around an operating point [5], [6]. But these 

controller are not suitable when operating point is changed 

due to any external or inter uncertainties. Thus, recently, 

various advance nonlinear control techniques have been 

applied to the control the UAH for different operating points 

under large disturbance [7]-[11]. A robust H∞ control method 

of the longitudinal and lateral dynamics of the BELL 205 
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helicopters in the presence of model uncertainties is 

presented in [12]. A robust feedback method is propoed in 

[13] to reject the external wind gust, where the external wind 

gust is assumed to be the sum of a fixed number of sinusoids 

with unknown amplitudes, frequencies and phases. To 

control of an autonomous scale helicopter under the 

consideration of parameter uncertainties and uniform time 

varying three-dimensional wind gusts a backstepping method 

is proposed in [14]. A nonlinear H∞ horizontal position 

controller for hovering and landing flight of a RUAV in the 

presence of horizontal wind gusts is proposed in [15]. Similar 

control approach is used in [16] to control the altitude and 

attitude for a hovering flight of an UAH in the presence of 

vertical wind gusts. A nonlinear robust small-gain control 

method is proposed in [17] to control the vertical motion of 

an autopilot helicopter during landing flight condition in the 

presence of parametric uncertainties on the plant and actuator 

model. The hover flight control of a helicopter by 

considering the 1-DOF system using the neural adaptive 

technique was proposed in [18]. Though, these controller are 

designed by considering the uncertainties with the system of 

an UAH but how to control the longitudinal and lateral 

dynamics of an UAH are not clear in this papers. Moreover, 

the longitudinal and lateral dynamics control to improve the 

trajectory tracking performance of an UAH under 

consideration of parametric uncertainties along with external 

disturbances are still uncovered. 

The main aim of this paper is to design a robust adaptive 

bacstepping controller to control the horizontal position of an 

UAH under the consideration of parametric uncertainties and 

external disturbances. Note that backstepping is a recursive 

nonlinear control design method, which provides an 

alternative to the feedback linearization. The advantage of 

this technique over feedback linearization technique is that it 

can gain from the stabilizing nonlinear terms rather than 

eliminating them. For the controlling purposes, the forward 

and sideward motions of an UAH, together with roll and 

pitch motions are controlled by lateral and longitudinal cyclic 

stick inputs via the flapping motion of the main rotor. Finally, 

a nonlinear simulation model is used to evaluate the 

effectiveness of the designed controller for hovering flight 

control and compared to that of an existing PID controller. 

The rest part of this paper is organized as follows. Section 

2 briefly introduces the mathematical model of UAH to 

design the controller. The control problem is formulated in 

Section 3. Section 4 presents the design procedure of the 

proposed controller. Section 5 discusses the simulation 

results. Finally, the conclusion of the work is presented in 

Section 6. 

2. Dynamical Model of UAH 

The UAH has the specific characteristic as compared to 

fixed wing aircraft such as, it can move vertically, float in the 

air, turn in place, move forward and laterally and can perform 

these movements in combinations. Due to these 

characteristics, the dynamic modeling of an UAH is a very 

complex problem. The motion states and control inputs of an 

UAH in the 6-DOF form can be represented as follows: 

{ }
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where u, v and w represent linear velocity in body frame; p, q 

and r denote roll, pitch and yaw rates; and φ , θ and Ψ  

represent the roll, pitch and yaw angle, respectively of an 

UAH. A single main rotor helicopter has four independent 

control inputs such as δlat, δlon, δcol and δped which denote the 

deflection of the lateral cyclic, longitudinal cyclic, main rotor 

collective pitch and tail rotor collective pitch, respectively. 

The collective commands control the magnitude of the main 

rotor and tail rotor thrust and other two control commands 

control the inclination of the tip-path-plane (TPP) on the 

longitudinal and lateral direction. The equations which 

describing the net forces of the UAH can be expressed as, 

θsin)( mgXwqvrum −=+−ɺ                    (1) 

θφ cossin)( mgYurwpvm +=+−ɺ                (2) 

θφ coscos)( mgZvpuqwm +=−+ɺ               (3) 

The equations which describe the moments of the UAH can 

be expressed as,

  
pqIIIqrrIpIL xzyyzzxzxx −−+−= )(ɺɺ             (4) 

)()( 22 rpIIIprqIM xzzzxxyy −+−+= ɺ            (5) 

qrIIIpqrIpIN xzxxyyzzxz +−++−= )(ɺɺ           (6) 

In order to complete the system modeling, the following 

three equations are essential which relate the Euler angle 

rates to the angular velocity [19]. 

θφθφφ tancostansin rqp ++=ɺ                (7) 

φφθ sincos rq −=ɺ                             (8) 

θ
φφ

cos

cossin rq +=Ψɺ                            (9) 

The longitudinal and lateral cyclic tilt of the main rotor 

disk is controllable through the cyclic pitch. Therefore, the 

longitudinal and lateral flapping dynamics can be represented 

by the following first-order equations [20]. 
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where latδ and lonδ are the lateral and longitudinal cyclic 
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control inputs, a1 and b1 are the lateral and longitudinal 

flapping angles and Alon and Blat are the effective steady-

state longitudinal and lateral gains from the cyclic inputs to 

the main rotor flapping angles. The terms 
u

a
Au ∂

∂= 1  and 

v

b
Bv ∂

∂= 1  are constants and represent the longitudinal and 

lateral Dihedral effect. The Dihedral effect is the change of 

tip-path-plane (TPP) tilts due to the longitudinal and lateral 

velocities [21]. The Dihedral effect is modeled by the 

following equation. 

)
2
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where Rb is the main rotor radius, σ solidity ratio, ‘a’ lift 

curve slope and CT thrust coefficient. Since the rotor is 

symmetric, so the consideration is Au=-Bv. In order to design 

the controller, the linearization is essential to derive a 

simplified working model, due to the inherent instability 

under hover and slow flight conditions. So, after linearizing 

the equations (1)-(8) the following parameterized model of 

decoupled longitudinal and lateral dynamics can be obtained,  
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where 
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 are the force and moment 

derivatives normalized by the mass of the helicopter or 

respective moment of inertia. The pitching flap-stiffness 

constant is represented by Ma that can be computed as 

follows 
yyyy

z
a

I

K

I

mM
M

β+= , where Mz is the height of the rotor 

hub above the fuselage center of gravity, Iyy is the pitching 

moment of inertia and Kβ is the rotor blade spring stiffness. 

Similarly the lateral flap-stiffness constant Lb can be 

computed as follows 
xxxx
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b

I
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L

β+= . The proposed linear 

model as described by equations (13)-(14), has been 

successfully espoused for control applications in a large 

number of small-scale unmanned helicopters [22]-[27]. The 

nonlinear robust adaptive nonlinear controller will be 

designed using backstepping technique based on equations 

(13)-(14). However, before design the controller the control 

problem formulation is discussed in the following section. 

3. Control Problem Formulation 

From the longitudinal dynamics model as described by 

equation (13), it can be seen that the longitudianl flapping a1 

is a function of u and q. Similarly, from the lateral dynamics 

model, it can be seen that the lateral flapping b1 is a function 

of v and p. Under this condition, to continue the design 

procedure of the proposed controller is not possible. From 

[28], it is clear that the effect of lateral and longitudinal 

forces produced by the flapping angles can be neglected as 

they have a minimal effect on the translational dynamics as 

compared to the propulsion forces produced by the stability 

derivatives Xθ and Xφ. Moreover, according to the control 

purposes, the dynamics of an UAH should be separated into 

two interconnected subsystems. The first subsystem accounts 

for the longitudinal dynamics and second subsystem for 

lateral dynamics. Now, after neglecting the effect of 

parameters Xa, Yb, Xq and Yp the longitudinal-lateral dynamics 

will have a strict feedback form which is suitable for the 

proposed controller. Again, as the mass of an UAH is 

continuously varying so the parameters of an UAH is not 

fixed. Moreover, the dynamics of the UAH will be affected 

by the external wind gusts. Thus, under the above 

assumptions, the simplified model equations of the 

longitudinal dynamics can be written as follows: 

ux =ɺ  

θguXu u −=ɺ                                 (15) 

q=θɺ  

11 daMqMuMq aqu +++= δɺ  

Similarly, the simplified model equations of the lateral 

dynamics can be written as follows: 

vy =ɺ  

φgvYv v +=ɺ                                  (16) 

p=φɺ  

21 dbLpLvLp bpv +++= ηɺ  

where d1 and d2 are the external disturbances. Based on 

equations (15)-(16), the proposed robust adaptive 

backstepping controller design procedure is shown in the 

following section. 

4. Controller Design 

In this section, the design procedure of the proposed 

controller for the longitudinal and lateral dynamics of an UAH 

is presented based on the appropriate decoupled model as 

described by equations (15)-(16). The objective of this control 

is to regulate the several physical quantities (e.g. position, 

attitude etc.) for improving the flight condition of an UAH. 
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4.1. Longitudinal Dynamics 

In this subsection, the design procedure of the adaptive 

robust backstepping controller is shown based on the 

Lyapunov function for the longitudinal dynamics as 

described by equation (15) under consideration of internal 

and external uncertainties. The design procedure is divided 

into four steps which is evaborately discussed as follows. 

Design step 1: First, for the longitudinal position tracking 

objective, let define the longitudinal position tracking error 

as  

uzxxzxxz dd =−=−= 111 ,, ɺɺɺɺ                (17) 

Here u is assumed as a virtual control variable and its 

desired value ud is a stabilizing function for equation (17). 

Let z2 be an another error variable representing the difference 

between the actual u and its desired value ud, i.e., 

dd uzuuuz +=−= 22 ,  

Therefore, interms of z2 the equation (17) can be written 

as 

duzz += 21
ɺ                                    (18) 

At this stage a virtual control law should be designed for 

ud in such a way that which would make 01 →z as 

∞→t . 

Now, consider the first CLF as follows: 

2

11
2

1
zW =  

whose time derivative after substituting the value of 
1zɺ  is 

)( 211 duzzW +=ɺ                               (19) 

Now an appropriate virtual control law ud need to be 

selected in such a way that which would make .01 ≤Wɺ  

Under this condition, the stabilizing function is chosen as 

11zkud −=  with k1>0                          (20) 

where k1 is a scalar parameter which can be used to tune the 

output response. Then equation (19) can be written as  

21

2

111 zzzkW +−=ɺ                            (21) 

From equation (21), it can be seen that if z2=0 then 

.0
2

111 ≤−= zkWɺ  

The second coupling term of equation (21) will be 

cancelled in the next step. Now the time derivative of ud 

which is essential in the next step can be written as 

ukud 1−=ɺ                                  (22) 

As uz =1
ɺ . 

Design step 2: In this step, the error dynamics for 

duuz −=2  is derived whose time derivative can be 

written as follows: 

ukguxz u 12 +−= θɺ                            (23) 

In which θ is viewed as an another vitual control variable. 

Now define a virtual control law dθ and let z3 be an another 

error variable which is representing the difference between 

actual control and virtual control i.e., dz θθ −=3 and after 

taking time derivative it can be written as  

)()( 312 du zgukxz θ+−+=ɺ                  (24) 

 
Now choose a second CLF as follows: 

2

212
2

1
zWW +=                              (25) 

whose time derivative by inseting equations (21) and (24) 

can be written as  

32112

2

112 })({ zgzgukxzzzkW du −−+++−= θɺ  (26) 

Now an appropriate stabilizing function dθ  can be 

selected in such a way to cancel out the terms related to z1, z2 

and u, while the term involving z3 cannot be removed and 

this is 

})({ 2211

1 zkukxzg ud +++= −θ                (27) 

Then equation (26) can be written as 

32

2

22

2

112 zgzzkzkW −−−=ɺ                     (28) 

From equation (28), it is clear that if 03 =z then 

0
2

22

2

112 ≤−−= zkzkWɺ  which is negative definite. In 

order to complete the next step, the time derivative of dθ is 

essential which can be written as  

}))(({ 221

1 zkguxkxug uud
ɺɺ +−++= − θθ        (29) 

Design step 3: Here the error dynamics for dz θθ −=3 is 

derived whose time derivative is 

dz θθ ɺɺɺ −=3
                                  (30) 

By substituting the values of θɺ and 
dθɺ into equation (30), 

it can be written as 
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In which q is viewed as the virtual control input. Now 

define a stabilizing control law qd and let z4 be an error 

variable representing the difference between actual and 

virtual control input, i.e., dqqz −=4 and interm of this 

error variable the equation (31) can be written as  

)}(){(

)})(({

312

1

1

1

43

du

uud

zgukxkg

guxkxugqzz

θ
θ

+−+−

−++−+=
−

−
ɺ

     (32) 

Now choose another CLF as 
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whose time derivative is  
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At this stage, the stabilizing qd need to be selected in such 

a way that cancel out the terms related to z1, z2, z3 and u, 

while the term involving z4 cannot be removed. Thus, the 

stabilizing function qd is 

33312
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After that selection, 
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From equation (35), it is clear that if 04 =z  then equation 

(35) simplified to 

0
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In order to complete the final step, the time derivative of qd 

can be written as 

fqd =ɺ                                    (37) 

where 
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The derivation of longitudinal dynamics control law along 

with the stability and robustness analysis of the system is 

shown in the following step. 

Design step 4: The dynamics of final error can be obtained 

as following by taking time derivative of z4  

faMdqMuMz aqu −+++= 114 δɺ             (38) 

In equation (38), the actual control input appears. By 

incorporating the estimation error of unknown parameter δ , 

equation (38) can be rewritten as  

faMdqMuMz aqu −++++= 114 )ˆ~
( δδɺ       (39) 

where δδδ ˆ~ −=  is the estimation error of unknown 

parameter δ . The objective is to design the actual control 

input a1 such that z1, z2, z3, and z4 converge to zero as t→∞. 

The presence of the parameter estimation error suggests the 

following form of the CLF  
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The time derivative of 
4W becomes 

δδ
γ
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1

4434 −+= zzWW                  (41) 

where 1γ is a positive design constant which determines the 

convergence speed of the estimation. By substituting the 

values of 
3Wɺ and 

4zɺ into equation (41), it can be written as 
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Now the final control law and adaptation law are chosen in 

such a way that which would make 04 ≤Wɺ . Thus, the final 

control law and adaptation law are chosen as follows:  

a

qu

M

dzzkfqMuMz
a

}ˆ)sgn(ˆ{ 14443

1

+Γ++−++
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δ
 

uMz u41
ˆ γδ =ɺ                                (42) 

where 
1d̂  is an estimate parameter which represents a best 

guess for the unknown external disturbance 
1d  and sgn is the 

signum function which can be written as 



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The estimation error on 
1d  is assumed to be bounded by 

knowing the constant, Γ, i.e., .||ˆ|| 11 Γ≤− dd Then by using 

the Schwartz inequality the derivative of W4 becomes 

[ ]||ˆ|||||| 114

2

44

2

33

2

22

2

114 ddzzkzkzkzkW −−Γ−−−−−≤ɺ  

Since ,||ˆ|| 11 Γ≤− dd so .04 ≤Wɺ  
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4.2. . . . Lateral Dynamics 

In this subsection, the robust adaptive backstepping 

controller is designed based on the Lyapunov function for the 

lateral dynamics in the presence of parametric and external 

uncertainties. Again, consider a CLF which is used to 

augment the estimated parameter error, 

22

8710
~

2

1

2

1 η
γ l

zWW ++=                      (44) 

Using the similar procedure as mentioned in the previous 

subsection, the following control input can be obtained for 

the lateral dynamics  

}ˆ)sgn(

),,,,(ˆ{

28188
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vzzfpLvLzLb dpvb

+Γ+

+−++−= − φφη
    (45) 

82
ˆ zvLvγη =ɺ                                (46) 

Finally, we get the following equation. 

0
2

88

2

77

2

66

2

5510 ≤−−−−= zkzkzkzkWɺ         (47) 

Thus, it can be proved that the system is Lyapunov stable 

and the errors are asymptotically converging to an arbitrarily 

small neighborhood of zero. Note that the detailed design 

procedure of the proposed controller for lateral dynamics is 

not illustrated in this paper. Simulation studies are conducted 

in the following section to show the effectiveness of this 

proposed controller.   

Remark 1: Control inputs in the controller design process 

are set to be longitudinal and lateral flapping angles. They 

will be converted later into longitudinal cyclic and lateral 

cyclic for implementation. 

5. Simulation Results 

The performance of the designed controller has been 

conducted on a nonlinear simulation model using the 

MATLAB simulink. To show the superiority of the proposed 

robust adaptive backstepping controller over an existing 

controller, the performance is also compared with a classical 

PID controller. The simulation is conducted in the case where 

the desired positions are set to x = 0 m and y = 0 m. The roll 

angle trim ϕref is initialized at 4.50 to compensate the effect 

of tail rotor thrust. 

The corresponding system responses with both controllers 

are shown in Fig. 1 to Fig. 3. The horizontal position 

responses of an UAH with both controllers is shown in Fig. 

1. It is clear that the position tracking error is almost zero 

with the proposed controller (solid blue line) but it is 

relatively large with the PID controller (solid green line) and 

it is oscillating.  

From the simulation result, it is clear that the proposed 

controller is more robust than the PID control under the 

condition of parametric and external disturbances within the 

system of an UAH. The corresponding velocity response of an 

UAH is shown in Fig. 2, from where it is clear that horizontal 

velocities settle to approximately 0 m/s at about 3 s after the 

start of the simulation in both y direction and x direction from 

the beginning of the simulation. But for the PID controller, it 

can be seen that they are oscillating and are not completely 

damped. 

 

(a). Longitudinal distance of UAH. 

 

(b). Lateral distance of UAH. 

Fig. 1. Horizontal positions response using robust adaptive backstepping 

and PID controllers. 

 

(a). Longitudinal velocity of UAH. 

 

(b). Lateral velocity of UAH. 

Fig. 2. Horizontal velocities response using robust adaptive backstepping 

and PID controllers. 

Thus, from the simulation results, it is obvious that the 

proposed controller is able to achieve the desired horizontal 

0 20 40 60 80 100
-0.2

-0.1

0

0.1

0.2

time (s)

L
o
n
g
it
u
d
in

a
l 
d
is

ta
n
c
e
 (

m
)

 

 

The proposed backstepping method

PID method

0 20 40 60 80 100
-1

-0.5

0

0.5

1

time (s)

L
a
te

ra
l 
d
is

ta
n

c
e
 (

m
)

 

 

The proposed backstepping method

PID method

0 20 40 60 80 100
-0.1

-0.05

0

0.05

0.1

time (s)

u
 (

m
/s

)

 

 

The proposed backstepping method

PID method

0 20 40 60 80 100
-0.5

0

0.5

time (s)

v
 (

m
/s

)

 

 

The proposed backstepping method

PID method



 Automation, Control and Intelligent Systems 2015; 3(6): 104-111 110 

 

positions in the presence of parametric and external 

disturbances by providing more stabilize hovering flight. 

The corresponding roll and pitch angle responses of an 

UAH during hover flight are shown in Fig. 3. From where, it 

can be seen that due to the proposed controller, the roll angle 

settles to the desired value at 4.5° wihtin few second, but for 

the PID controller, it settles in between about 2.5° to 3.90°. It 

can be seen that the angle responses are more stable with the 

proposed controller than the existing controller in terms of 

settling time and oscillations. 

 

(a). Roll angle of UAH. 

 

(b). Pitch angle of UAH. 

Fig. 3. Roll and Pitch angles response using the adaptive robust 

backstepping and PID controllers. 

 

(a). Control signal of longitudinal dynamics. 

 

(b). Control signal of lateral dynamics. 

Fig. 4. Control signals using the robust adaptive backstepping and PID 

controllers. 

The control signals for the both controllers is shown in 

Fig. 4, from where it can be seen that control signals do not 

exceed the physical constraints of the helicopter. From the 

simulation results, it is clear that the designed controller is 

more effective than an existing controller in terms of settling 

time and damping of oscillation. 

6. Conclusion 

In this paper, a backstepping method to design a robust 

adaptive controller for an UAH is proposed to enhance the 

stabilization of horizontal position control of a hovering flight. 

Based on the proposed formulation, the designed controller is 

adaptive to the unknown parameters and robust to the external 

disturbances. From the theoretical and numerical evaluations, 

it can be concluded that the proposed controller has the 

capability to stabilize the longitudinal and lateral dynamics as 

it can track the pre-defined reference trajectory despite the 

presence of parametric and external uncertainties within the 

UAH system model. Future work will be devoted on the 

implemention of the controller to a real system, e.g., flight test 

under the consideration of parametric and external 

uncertainties to prove the feasibility in the real life. 
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