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Abstract: In this paper, It is showed that however we can mention the guaranteed gain margin of -6 to +∞ and also phase 

margin of -60° to +60° for single input systems as the well-known robustness properties of linear quadratic regulators (LQR). 

But determining the robustness of closed-loop system from the range of gain and phase margins is not corrected. By an 

example, this matter is explained. 
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1. Introduction 

In classical frequency domain techniques for single-input 

single-output (SISO) control system design, the robustness 

issue is handled [1]. These techniques employ various 

graphical means (e.g., Nyquist, inverse Nyquist, Bode, 

Nichols plots) of displaying the system model in terms of its 

frequency response. In these plots, it is automatic to 

determine the minimum change in the model frequency 

response that leads to instability. 

The margins are defined in [2]. Here the nominal feedback 

system is assumed stable. The positive phase margin is the 

smallest value of Φ greater than 0 such that the system of Fig. 

1 with L(jw) = e��  is unstable. The issue of robustness of 

linear-quadratic regulators (LQR) were very attractive for 

many years. Phase margin is defined in a similar style. The 

upward gain margin is the smallest value of L(s) = constant > 

1 (usually L(s) = +1 ) for which the system is unstable, and 

the downward gain margin is similarly defined. The notions 

of gain and phase margins have gained such wide-spreading 

acceptance that they are incorporated in to the specifications 

for a control system design [2]. 

Each LQR for a single-input plant possesses a guaranteed 

gain margin of -6 to +∞ and phase margin of -60° to +60°		, 
in all channels [3,4,5]. It is demonstrated via an example that 

in spite of its impressive margins the full state linear 

quadratic optimal regulator may suffer from robustness 

problems where small changes in the parameters of the 

system may lead to fast unstable closed-loop modes. The 

gain and phase margins of the optimal regulator do not 

guarantee good robustness to plant parameter variation [6, 

7,8]. 

In this paper, the same linear quadratic state feedback 

optimal regulator problem is considered and it is shown the 

conclusion is not correct and cannot opine about robustness 

of the plant at this way. 

 

Fig. 1. Feedback system with multiplicative representation of uncertainty in 

G(s) [2]. 

2. Example 

We consider the same linear quadratic state feedback 

optimal regulator problem [9]. For the single input, single 

output linear time-invariant continuous system S
A	, b	, c�� 
given by 

x
t� = Ax
t� + bu
t�	x
0� = x� ≠ 0 

�
�� = ���
��                                      (1) 

Where 

� = �−1 0
0 −2" 	# = �11" 	� = �11"                (2) 
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A state feedback control should be found that minimizes 

the following index of performance: 

J = % &y(
t� + ru(
t�*+
� dt, r > 0.                   (3) 

It is well known that the optimal control law is given by: 

u = 	k�x                                         (4) 

Where the optimal gain vector 0� = 
01, 0(� satisfies the 

following spectral factorization equation 


1 + b�
−sI − A��k�
1 + k�
sI − A�41b� 	= 

		1 + 1/rb�
−sI − A��41cc�
sI − A�41b                (5) 

The return difference of the optimal regulator is readily 

given by: 

1+0�
67 − ��41# = 89:;<:(=	8:=
89:>8:(

                  (6) 

Where 

? = ;4 + 1/A                               (7) 

From the latter the optimal gain vector is found to be 

k� = 
k1, k(� = B1 + q − ;5 + 2q, 2;5 + 2q − q − 4E  (8) 

Perturbing b by small variation F  and considering #G =

1 + F, 1��  examine the zeros of the new return difference. 

We obtain that 

1 + 0�
67 − ��41#G = 89:HI8:H9

8:1�
8:(�                    (9) 

Where 

J1 = 
1 − F�;5 + 2? + F
1 + ?�                  (10) 

J( = 
1 + 2F�? + 2FB1 − ;5 + 2?E               (11) 

In [6] is used Fig. 2 for determining the instability region 

of the system, first it is created a question in each reader's 

mind "why is the diagram based on F	, 1/A ". Whiles Fig. 3 

shows the corrected diagram. As can be seen in Fig. 2 if 1/r is 

selected great so the system will be unstable. In fact with 

selection of great 1/r and small F  we can determine the 

instability region but pay attention that great 1/r means small 

r in Fig. 3 and however r goes smaller value the effect of 

optimal control law becomes lower in index of performance 

so that in very large 1/r (very small r) the index performance 

will be nearly the following form. 

J = % �(
��+
� dt	                                 (12) 

In this case the amplitude of control policy can be very 

large so each small variation in parameters (each small ε) 

causes that the control idea becomes large and finally the 

plant goes to instability. 

On the other hand, the optimal control law is not designed 

for contrasting against uncertainty in parameters. However 

by using the optimal control policy the system possesses the 

guaranteed stability margins, but stability margins are used 

for defining instability or stability of the plant not for the 

robustness. In other words gain and phase margins of the 

system show acceptable variations of gain or phase of the 

controller, while the closed loop system is stable. 

 

Fig. 2. Instability region of the closed loop system [6]. 

 

Fig. 3. New instability region of the closed loop system. 

Now we suppose b is changed from 
1,1�� to Bλ
��, λ
��E�, 
it means the linear system is converted to a nonlinear system, 

in this case if λ
�� > 1/2,  the plant remains stable. In 

addition, if we consider that one of the components of b is 

zero, that is, b equals to 
0,1�� or 
1,0��, with Perturbing b by 

small variation ε  in nonzero component for ε > −1/2  the 

system will be stable. 

3. Conclusion 

In this paper it has been shown that cannot use the stability 

margins for diagnosis of the robustness of the plant because 

gain and phase margins are applied for recognition instability 

or stability of the plant not for robustness. In this work we 
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illustrate that high gain margin of the system never insure 

being robustness against uncertainties also the gain margin 

and robustness of the plant versus the each variation in the 

parameters are the separate concepts. Moreover it can be 

found the optimal control law of the linear quadratic 

regulators is robust against the special range of variations in 

input gain factor. So linear quadratic multivariable designs 

have the property of gain margin of -6 to +∞  and ±60� 

phase margin for each control channel that cannot use from 

this feature for denotation of robustness of the plant. 
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