

Automation, Control and Intelligent Systems
2013; 1(3): 53-58

Published online June 30, 2013 (http://www.sciencepublishinggroup.com/j/acis)

doi: 10.11648/j.acis.20130103.13

Ant colony optimization with genetic operations

Matej Ciba, Ivan Sekaj

Institute of Control and Industrial Informatics, Bratislava, Slovakia

Email address:
bigmato@centrum.sk(M. Ciba), ivan.sekaj@stuba.sk(I. Sekaj)

To cite this article:
Matej Ciba, Ivan Sekaj. Ant Colony Optimization with Genetic Operations. Automation, Control and Intelligent Systems. Vol. 1, No. 3,

2013, pp. 53-58. doi: 10.11648/j.acis.20130103.13

Abstract: This paper attempts to overcome stagnation problem of Ant Colony Optimization (ACO) algorithms. Stagnation

is undesirable state which occurs at a later phases of the search process. Excessive pheromone values attract more ants and

make further exploration hardly possible. This problem has been addressed by Genetic operations (GO) incorporated into

ACO framework. Crossover and mutation operations have been adapted for use with ant generated strings which still have to

provide feasible solutions. Genetic operations decrease selection pressure and increase probability of finding the global

optimum. Extensive simulation tests were made in order to determine influence of genetic operation on algorithm

performance.

Keywords: Ant Colony Optimization, Genetic Operations, Crossover, Mutation, Minimal Path Search

1. Introduction

Wide range of problems like Routing problem,

Assignment problem, Scheduling problem and others can

be transformed into graph representation. Exact algorithms

for instance Dijkstra or Bellman-Ford appear to be slow

and inefficient on large scale graphs. In this case some

heuristic information which guide search process is useful.

One of the well-known graph search algorithm that utilizes

a heuristic is A* search [1] or ACO algorithm.

Ant colony optimization represents an efficient tool for

optimization and design of graph oriented problems. It is a

multi-agent meta-heuristic approach and was first purposed

by M. Dorigo et al. [2] as Ant system (AS) algorithm.

During the search process each ant sets off from ant

colony (start position) and moves to search food

(destination). The aim is to find the shortest path. As ants

are passing the terrain (graph) they mark used routes (arcs

of the graph) by chemical substance called pheromone. On

their way back they use the same way from which abundant

loops has been removed, but the amount of pheromone (1)

∆τ
k
ij(t) they produced is inversely proportional to the tour

length L
k
(t).

/ () (,) ()
()

0 (,) ()

k k

k

ij k

Q L t if i j T t
t

if i j T t
τ

 ∈
∆ = 

∉
 (1)

T
k
(t) is the tour generated by ant k, Q is a constant and

tuple (i, j) denotes beginning and termination node of an arc.

All pheromone tracks (2) are preserved by arcs of the graph

1

(1) (1) () ()
m

k

ij ij ij

k

t t tτ ρ τ τ
=

+ = − + ∆∑ (2)

where ρ ∈ (0,1) is the pheromone persistence (1 - ρ is

evaporation rate) and m is the number of ants. Evaporation

rate is a user adjusted parameter and affects pheromone

durability; i.e. how long the acquired information will be

available. Too high values causes random search, too low

values get algorithm stock in local optimum.

An ant in each node has to make a decision which arc to

take. At the beginning when no pheromone values are

available heuristic values ηij takes dominance. Later the ant

uses probability selection rule to choose the next arc

according to

()
()

()
k
i

ijk

ij

ij

j N

p t
p t

p t
∈

=
∑ (3)

where p
k
ij(t) is probability the ant k chooses the arc (i, j) from

the neighborhood N
k
i of node i except the node visited

previously. The more pheromone is located on particular arc,

the more attractive it appears. The probability pij(t) of

choosing the particular arc (i, j) depends on pheromone τij(t)

and the heuristic ηij values which are associated with the arc

(4).

54 Matej Ciba et al.: Ant Colony Optimization with Genetic Operations

()
()

()
k
i

ij ijk

ij

ij ij

j N

t
p t

t

α β

α β

τ η
τ η

∈

+
=

+∑ (4)

Symbols α and β are weight parameters and represents

balance between ant’s gathered knowledge and the user

preferred area. Heuristic values ηij affect probability only at

the beginning when pheromone values are low.

2. Modification of ACO Algorithm

Disadvantages of ACO algorithms are (i) many user

parameters and (ii) the selection pressure. The first point is

a property of the algorithm, while the second point has had

many papers devoted to it. Let’s mention ant colony system

(ACS) with pseudo-random proportional rule [3] in which

random uniformly distributed variable q ∈ (0,1) is

compared with a tunable parameter q0 ∈ <0,1> . If q > q0

then

1 arg max
()

0

ijk

ij

if j p
p t

otherwise

=
= 


 (5)

else the probability selection rule (3) is applied; random

selection applied to ASrank [4] where random selection rate r

is the probability of random selection and represents a user

parameter which adjusts the balance between exploration

and exploitation; prevention of quick convergence (i) and

stagnation avoidance (ii) mechanisms applied to AS [5].

The mechanism for prevention of quick convergence (i)

is based on pseudo-random proportional rule [3], but the

tunable parameter q0 is dependent on algorithm iteration (6)

0

max

log ()

log ()

e

e

NC
q

N
= (6)

where NC is the current iteration and Nmax is the

termination iteration.

The stagnation avoidance mechanism (ii) is based on the

comparison of a randomly generated quantity q ∈ (0,1) with

probability p
k
ij(t) of selected arc. If q ≥ p

k
ij(t), then choose

the next node randomly. This occurs in later stages of the

search process, where pheromone values tend to be high,

and thus the chance of further exploration is low.

3. Genetic Operations Applied on ACO

Genetic algorithms (GA) were proposed by Holland

(1975). The original GA is known as simple genetic

algorithm (SGA). GA belongs to adaptive stochastic

optimization class and is typically used for combinatorial

problems. The four main components of GA are

representation (i), mutation (ii), crossover (iii) and selection

(vi) mechanism. Each component is adapted in order to

provide feasible solution for ACO algorithm.

In ACO algorithms representation (i) of genotype space is

sequence of nodes:

;
L

n n N∈ (7)

where gene n is graph node and L is path length. The

population size is given by the number of genomes, i.e. the

number of ants m which generate the set of paths within one

generation.

Mutation (ii) mimics random gene changes. In each

genome each gene is changed with the equal probability. The

simplest form is one point mutation on Fig. 1. In ACO

adaptation the first and the last node is excluded from

mutation. For feasibility reason the replacement node nr

(new gene) is such a node from the node ni neighborhood Ni,

to which an arc from ni predecessor np to ni successor ns

exists (Fig. 2). If more such nodes occur, random selection is

applied. If no such node exists, another gene is randomly

picked up from the list.

In ACO algorithm crossover position is represented by a

common node of parental strings except the first and the last

node (Fig. 3). If more of such nodes exist, random selection

is applied. Crossover operation makes sense only if both

child strings differ from their parents.

In GA many selection (vi) mechanisms are available, like

roulette-wheel selection, tournament selection, stochastic

universal sampling or reward-based selection [7]. Since

optimization process is primary done by ants cooperative

behavior, the selection process has purely random concept

and genetic operations serve just for selection pressure

decrease.

On both figures survivor strategy where parents are

replaced by their children is shown. No string is allowed to

take the same genetic operation more than once.

Figure 1. One point mutation.

Figure 2. Candidates which can replace node ni are ng and nk only.

Figure 3. One point crossover.

 Automation, Control and Intelligent Systems 2013; 1(3): 53-58 55

4. ACO Algorithm with Genetic

Operations

The above described genetic operations have been applied

to one of the best performing ACO algorithms of Kumar,

Tiwari and Shankar (ACOKTS) [5]. At the end of each cycle t,

when all the ants finish their tours T
k
(t), genetic operations

are applied on the T
k
(t) strings which represents the list of

nodes. Prior the genetic operations all loops are removed

from the tours.

At first mutation is applied. It is applied on random

selected tour T
k
(t) in random selected node. If mutation is

not feasible, another node is chosen. If more candidates by

which the selected node can be replaced occur, the new node

is random chosen from the candidates. If mutation fails on

all nodes of the tour, another tour is chosen.

After all mutation operations are performed, crossover

operations are applied. Parent strings are random selected. If

crossover operation is not feasible, another second string is

selected. If no tour has common node with the first selected

tour, another first tour is selected and the random selection

process is repeated.

Since genetic operations may produce strings with loops,

in ACO framework prior and immediately after each genetic

operation a loop removal procedure is performed. After all

genetic operations are executed fitness evaluation and

pheromone update are scheduled.

Genetic operations do not have to be necessarily feasible.

Feasibility of genetic operations depends on the graph and

generated tours. For this purpose ACOGO algorithm has

embedded user feedback which represents a ratio between

accomplished and required genetic operations. Two of such

rates are provided; one for each genetic operation.

Figure 4. The 80 node graph with dashed minimal path

5. Case Study

The above described ACOGO algorithm has been tested on

a random generated graph. Common ACO parameter values

were set in accordance with [8] and are listed in the Table 1.

The value for the number of cycles represents three macro

cycles of ACOMC [9] for the same graph and parameters.

Test graph is a symmetrical multi-graph with 80 nodes

and 300 arcs (Fig. 4). Node coordinates x,y fall in range <0,1>

and arc’s values cij represent the arc lengths. The task is to

find the shortest path between start node ns = 1 and end node

ne = 80.

Variable parameters were set to determine the influence of

the genetic operations quantity on algorithm performance

and effect of distribution of mutation operations between

paths. For each setting 500 trials were performed. For test

reconciliation probability n [%] of finding the global

optimum (T
*
 = [1 3 22 74 75 46 59 63 80]) was evaluated.

 n1

 n2

 n3

 n4

 n5
 n6

 n7
 n8

 n9
 n10

 n11
 n12

 n13

 n14

 n15

 n16

 n17

 n18

 n19

 n20

 n21

 n22

 n23

 n24

 n25

 n26

 n27

 n28

 n29

 n30

 n31

 n32

 n33

 n34

 n35

 n36

 n37

 n38

 n39

 n40

 n41

 n42

 n43

 n44

 n45

 n46

 n47

 n48

 n49

 n50

 n51

 n52

 n53

 n54

 n55

 n56

 n57

 n58

 n59

 n60

 n61

 n62

 n63

 n64

 n65

 n66

 n67

 n68

 n69

 n70

 n71

 n72

 n73

 n74 n75

 n76

 n77

 n78

 n79

 n80

56 Matej Ciba et al.: Ant Colony Optimization with Genetic Operations

Table 1. Common ACO parameters settings

Parameter name Value

Initial pheromone value τij(0) 0.1

Weight of pheromone information α 0.5

Heuristic values ηij 0.1

Weight of heuristic information β 0.1

Pheromone persistence ρ 0.05

Number of ants m 10

Number of cycles 200

6. Results

Simulation results were divided into three groups

according to number of crossover pairs and are listed in the

Table 2.

Table 2. Simulation results for various GO settings

Mutation

paths

Mutations per

paths

Probability of finding the global

optimum [%]

No crossover

operation

One

crossover

pair

Two

crossover

pairs

0 0 5.6 4 6.2

1

1 6.4 6 6

2 6.8 8.8 3.6

3 6 6 7

4 7.6 5.6 7

5 6.2 7.2 7.4

2

1 6.4 8.6 6.2

2 6.4 7.4 7.2

3 7.8 7 7.2

4 8.8 6.2 8

5 7.6 10 9.6

3

1 7.4 5.6 6.4

2 8.2 5.8 8.4

3 9.2 7.4 7.8

4 9 9 9.4

5 8.2 7.4 9.6

4

1 6.4 8.2 7.6

2 8.8 8.8 9

3 10.4 13 8.4

4 10 9.6 10.2

5 9.4 8.2 11.6

5

1 8.8 8 6.6

2 9.6 8.6 9

3 11.2 8 9.2

4 11.2 10.2 12

5 11.2 9 10

6.1. Mutation effect

The reference value of n [%] was received without any

genetic operation and is 5.6 (Table 2, row 1). The results

received with GO are better almost in any case. It can be

seen that the higher number of mutation operations, the

better the performance is (Tables 2).

For better results representation three graphs are provided.

Their color map was set to show green - blue when the

results are worse than reference value and yellow to red

otherwise (Fig. 5 – 7).

The outcome with different mutation distribution is

asymmetric. Results received without crossover operation

have higher values along with the Mutation paths axis (Fig.

5). However, results received with two crossover pairs have

higher values along with the Mutations per path axis (Fig. 7).

I.e. with no crossover pair certain amount of mutation

operations should be spread out among more paths, but with

2 crossover pairs concentration of mutation operation on less

paths tends to perform better. This behavior may be caused

by the execution order of the GO: crossover is applied after

mutation, thus crossover may re-distribute mutation

substrings between more paths.

The results for one crossover pair show different behavior.

It does not have the highest value on edges of the surface

where the highest amount mutation operation is. The highest

value 13% was received with four mutation paths with three

mutation operation per path.

Genetic operations where nearly always feasible; ratio

accomplished / required mutation operations is 100% and

for the crossover operation over 99%.

Figure 5. Zero crossover pairs results

Figure 6. One crossover pair results

1
2

3
4

5

1
2

3
4

5
0

2

4

6

8

10

12

14

Mutation paths

Zero crossover pairs

Mutations per path

S
u
c
c
e
s
s

r
a
t
e

[
%
]

1
2

3
4

5

1
2

3
4

5
0

2

4

6

8

10

12

14

Mutation paths

One crossover pair

Mutations per path

S
u
c
c
e
s
s

r
a
t
e

[
%
]

 Automation, Control and Intelligent Systems 2013; 1(3): 53-58 57

Figure 7. Two crossover pairs results

6.2. Crossover effect

In order to determine the effect of crossover operation

crossover rate was let to grow up to 100% (Table 3). To

prevent interference, no mutation operation was allowed.

The results vary (Fig. 8); the highest output was gained

for 60% of crossover rate. Beyond 60% threshold ants

foraging behavior is suppressed by crossover overload. As

the crossover rate increases, ratio accomplished / required

operation decreases (Fig. 9). This is caused by the search

space dimension. It is too large for ten ants to meet.

GO does not affect the length of the search process. The

mean value of the cycle when the best value was found is

109.081 with standard deviation 2.617.

Table 3. Crossover operation results

Crossover rate [%]
Probability of finding

global optimum [%]

Valid crossover

operations [%]

0 5.6 N/A

20 4 0.99953

40 6.2 0.99498

60 7.4 0.96859

80 5 0.88374

100 5.8 0.73246

Figure 8: Crossover operation quantity vs. performance

Figure 9: Crossover operation quantity vs. valid operations

7. Conclusion

It has been proved that genetic operations increase ACO

algorithm performance. Even small number of any genetic

operation causes positive effect.

Limit of crossover is 60% of crossover rate. The higher

the crossover rate, the lower the accomplished / required

ratio. Mutation operation causes better results than crossover

operation. This can be explained by the nature of the

mutation operation which creates new paths whilst crossover

operation can only combine already existing solutions.

 The higher amount of mutation operations the higher the

performance gain is. No limit for amount of mutation

operation was found during the simulation. Without

crossover operation distributed mutation operation has

better performance, but with two crossover pairs

concentrated mutation operation on less paths tends to

perform better. The impact of the GO execution order on the

mutation operation distribution needs to be verified.

The results are promising; GO improves ACO algorithm

performance more than twice. Further research and more

experiments are needed to determine the distribution and

optimal amount of mutation operation with respect to the

number of ants and length of the paths.

Acknowledgments

Thanks to Science Publishing reviewers for valuable

feedback and provided comments which increased the paper

quality.

References

[1] P. E. Hart, N. J. Nilsson and B. Raphael, A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics SSC4 4(2),
1968, 100–107

[2] M. Dorigo, G. Caro and L. Gambardella, Ant algorithms for
discrete optimization, Artificial Life, 5(2), 1999, 137-172

[3] L. Gambardella and M. Dorigo, Solving symmetric and

1
2

3
4

5

1
2

3
4

5
0

2

4

6

8

10

12

14

Mutation paths

Two crossover pairs

Mutations per path

S
u
c
c
e
s
s

r
a
t
e

[
%
]

20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10
Crossover operation quantity vs. performance

Crosover rate [%]

P
er

fo
rm

an
ce

 [
%

]

20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1
Crossover operation quantity vs. valid operations

Crosover rate [%]

V
al

id
 c

ro
ss

ov
er

 o
pe

ra
tio

ns
 [

%
]

58 Matej Ciba et al.: Ant Colony Optimization with Genetic Operations

asymmetric TSPs by ant colonies, In Proceedings of the IEEE
Conference on Evolutionary Computation, ICEC96, IEEE
Press, 1996, 622–627

[4] Y. Nakamichi and T. Arita, Diversity control in ant colony
optimization, In Abbas HA (ed) Proceedings of the Inaugural
Workshop on Artificial Life (AL'01), Adelaide, Australia,
Dec 11, 2001, 70-78

[5] R. Kumar M. K. Tiwari and R. Shankar, Scheduling of
flexible manufacturing systems: An ant colony optimization
approach, proc. Instn. Mech. Engrs Vol. 217 Part B: J.
Engineering Manufacture, 2003, 1443–1453

[6] J. H. Holland, Adaptation in Natural and Artificial Systems:

An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence, University of Michigan
Press, 1975

[7] I Sekaj, Evolucne vypocty a ich vyuzitie v praxi, IRIS Press,
2005

[8] M. Becker and H. Szczerbicka, Parameters influencing the
performance of ant algorithms applied to optimization of
buffer size in manufacturing, IEMS Vol. 4, No. 2, December
2005, 184–191

[9] M. Ciba, ACO algorithm with macro cycles, Proceedings on
14th Conference of Doctorial Students on Elitech’12, Slovak
Technical University of Bratislava, May 2012

