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Abstract: This paper attempts to overcome stagnation problem of Ant Colony Optimization (ACO) algorithms. Stagnation 

is undesirable state which occurs at a later phases of the search process. Excessive pheromone values attract more ants and 

make further exploration hardly possible. This problem has been addressed by Genetic operations (GO) incorporated into 

ACO framework. Crossover and mutation operations have been adapted for use with ant generated strings which still have to 

provide feasible solutions. Genetic operations decrease selection pressure and increase probability of finding the global 

optimum. Extensive simulation tests were made in order to determine influence of genetic operation on algorithm 

performance. 

Keywords: Ant Colony Optimization, Genetic Operations, Crossover, Mutation, Minimal Path Search 

 

1. Introduction 

Wide range of problems like Routing problem, 

Assignment problem, Scheduling problem and others can 

be transformed into graph representation. Exact algorithms 

for instance Dijkstra or Bellman-Ford appear to be slow 

and inefficient on large scale graphs. In this case some 

heuristic information which guide search process is useful. 

One of the well-known graph search algorithm that utilizes 

a heuristic is A* search [1] or ACO algorithm. 

Ant colony optimization represents an efficient tool for 

optimization and design of graph oriented problems. It is a 

multi-agent meta-heuristic approach and was first purposed 

by M. Dorigo et al. [2] as Ant system (AS) algorithm. 

During the search process each ant sets off from ant 

colony (start position) and moves to search food 

(destination). The aim is to find the shortest path. As ants 

are passing the terrain (graph) they mark used routes (arcs 

of the graph) by chemical substance called pheromone. On 

their way back they use the same way from which abundant 

loops has been removed, but the amount of pheromone (1) 

∆τ
k
ij(t) they produced is inversely proportional to the tour 

length L
k
(t). 
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T
k
(t) is the tour generated by ant k, Q is a constant and 

tuple (i, j) denotes beginning and termination node of an arc. 

All pheromone tracks (2) are preserved by arcs of the graph  
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where ρ ∈ (0,1) is the pheromone persistence (1 - ρ is 

evaporation rate) and m is the number of ants. Evaporation 

rate is a user adjusted parameter and affects pheromone 

durability; i.e. how long the acquired information will be 

available. Too high values causes random search, too low 

values get algorithm stock in local optimum. 

An ant in each node has to make a decision which arc to 

take. At the beginning when no pheromone values are 

available heuristic values ηij takes dominance. Later the ant 

uses probability selection rule to choose the next arc 

according to 
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where p
k
ij(t) is probability the ant k chooses the arc (i, j) from 

the neighborhood N
k
i of node i except the node visited 

previously. The more pheromone is located on particular arc, 

the more attractive it appears. The probability pij(t) of 

choosing the particular arc (i, j) depends on pheromone τij(t) 

and the heuristic ηij values which are associated with the arc 

(4). 
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Symbols α and β are weight parameters and represents 

balance between ant’s gathered knowledge and the user 

preferred area. Heuristic values ηij affect probability only at 

the beginning when pheromone values are low.  

2. Modification of ACO Algorithm 

Disadvantages of ACO algorithms are (i) many user 

parameters and (ii) the selection pressure. The first point is 

a property of the algorithm, while the second point has had 

many papers devoted to it. Let’s mention ant colony system 

(ACS) with pseudo-random proportional rule [3] in which 

random uniformly distributed variable q ∈ (0,1) is 

compared with a tunable parameter q0 ∈ <0,1> . If q > q0 

then 

1 arg max
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         (5) 

else the probability selection rule (3) is applied; random 

selection applied to ASrank [4] where random selection rate r 

is the probability of random selection and represents a user 

parameter which adjusts the balance between exploration 

and exploitation; prevention of quick convergence (i) and 

stagnation avoidance (ii) mechanisms applied to AS [5]. 

The mechanism for prevention of quick convergence (i) 

is based on pseudo-random proportional rule [3], but the 

tunable parameter q0 is dependent on algorithm iteration (6) 
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where NC is the current iteration and Nmax is the 

termination iteration. 

The stagnation avoidance mechanism (ii) is based on the 

comparison of a randomly generated quantity q ∈ (0,1) with 

probability p
k
ij(t) of selected arc. If q ≥ p

k
ij(t), then choose 

the next node randomly. This occurs in later stages of the 

search process, where pheromone values tend to be high, 

and thus the chance of further exploration is low. 

3. Genetic Operations Applied on ACO 

Genetic algorithms (GA) were proposed by Holland   

(1975). The original GA is known as simple genetic 

algorithm (SGA). GA belongs to adaptive stochastic 

optimization class and is typically used for combinatorial 

problems. The four main components of GA are 

representation (i), mutation (ii), crossover (iii) and selection 

(vi) mechanism. Each component is adapted in order to 

provide feasible solution for ACO algorithm. 

In ACO algorithms representation (i) of genotype space is 

sequence of nodes: 

;
L

n n N∈                       (7) 

where gene n is graph node and L is path length. The 

population size is given by the number of genomes, i.e. the 

number of ants m which generate the set of paths within one 

generation. 

Mutation (ii) mimics random gene changes. In each 

genome each gene is changed with the equal probability. The 

simplest form is one point mutation on Fig. 1. In ACO 

adaptation the first and the last node is excluded from 

mutation. For feasibility reason the replacement node nr 

(new gene) is such a node from the node ni neighborhood Ni, 

to which an arc from ni predecessor np to ni successor ns 

exists (Fig. 2). If more such nodes occur, random selection is 

applied. If no such node exists, another gene is randomly 

picked up from the list. 

In ACO algorithm crossover position is represented by a 

common node of parental strings except the first and the last 

node (Fig. 3). If more of such nodes exist, random selection 

is applied. Crossover operation makes sense only if both 

child strings differ from their parents. 

In GA many selection (vi) mechanisms are available, like 

roulette-wheel selection, tournament selection, stochastic 

universal sampling or reward-based selection [7]. Since 

optimization process is primary done by ants cooperative 

behavior, the selection process has purely random concept 

and genetic operations serve just for selection pressure 

decrease. 

On both figures survivor strategy where parents are 

replaced by their children is shown. No string is allowed to 

take the same genetic operation more than once. 

 

Figure 1. One point mutation. 

 

Figure 2. Candidates which can replace node ni are ng and nk only. 

 

Figure 3. One point crossover. 
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4. ACO Algorithm with Genetic 

Operations 

The above described genetic operations have been applied 

to one of the best performing ACO algorithms of Kumar, 

Tiwari and Shankar (ACOKTS) [5]. At the end of each cycle t, 

when all the ants finish their tours T
k
(t), genetic operations 

are applied on the T
k
(t) strings which represents the list of 

nodes. Prior the genetic operations all loops are removed 

from the tours. 

At first mutation is applied. It is applied on random 

selected tour T
k
(t) in random selected node. If mutation is 

not feasible, another node is chosen. If more candidates by 

which the selected node can be replaced occur, the new node 

is random chosen from the candidates. If mutation fails on 

all nodes of the tour, another tour is chosen. 

After all mutation operations are performed, crossover 

operations are applied. Parent strings are random selected. If 

crossover operation is not feasible, another second string is 

selected. If no tour has common node with the first selected 

tour, another first tour is selected and the random selection 

process is repeated. 

Since genetic operations may produce strings with loops, 

in ACO framework prior and immediately after each genetic 

operation a loop removal procedure is performed. After all 

genetic operations are executed fitness evaluation and 

pheromone update are scheduled. 

Genetic operations do not have to be necessarily feasible. 

Feasibility of genetic operations depends on the graph and 

generated tours. For this purpose ACOGO algorithm has 

embedded user feedback which represents a ratio between 

accomplished and required genetic operations. Two of such 

rates are provided; one for each genetic operation. 

 

Figure 4. The 80 node graph with dashed minimal path 

5. Case Study 

The above described ACOGO algorithm has been tested on 

a random generated graph. Common ACO parameter values 

were set in accordance with [8] and are listed in the Table 1. 

The value for the number of cycles represents three macro 

cycles of ACOMC [9] for the same graph and parameters.  

Test graph is a symmetrical multi-graph with 80 nodes 

and 300 arcs (Fig. 4). Node coordinates x,y fall in range <0,1> 

and arc’s values cij represent the arc lengths. The task is to 

find the shortest path between start node ns = 1 and end node 

ne = 80. 

Variable parameters were set to determine the influence of 

the genetic operations quantity on algorithm performance 

and effect of distribution of mutation operations between 

paths. For each setting 500 trials were performed. For test 

reconciliation probability n [%] of finding the global 

optimum (T
*
 = [1 3 22 74 75 46 59 63 80]) was evaluated. 
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Table 1. Common ACO parameters settings 

Parameter name Value 

Initial pheromone value τij(0) 0.1 

Weight of pheromone information α  0.5 

Heuristic values ηij 0.1 

Weight of heuristic information β 0.1 

Pheromone persistence ρ 0.05 

Number of ants m 10 

Number of cycles 200 

6. Results 

Simulation results were divided into three groups 

according to number of crossover pairs and are listed in the 

Table 2. 

Table 2. Simulation results for various GO settings 

Mutation 

paths 

Mutations per 

paths 

Probability of finding the global 

optimum [%] 

No crossover 

operation 

One 

crossover 

pair 

Two 

crossover 

pairs 

0 0 5.6 4 6.2 

1 

1 6.4 6 6 

2 6.8 8.8 3.6 

3 6 6 7 

4 7.6 5.6 7 

5 6.2 7.2 7.4 

2 

1 6.4 8.6 6.2 

2 6.4 7.4 7.2 

3 7.8 7 7.2 

4 8.8 6.2 8 

5 7.6 10 9.6 

3 

1 7.4 5.6 6.4 

2 8.2 5.8 8.4 

3 9.2 7.4 7.8 

4 9 9 9.4 

5 8.2 7.4 9.6 

4 

1 6.4 8.2 7.6 

2 8.8 8.8 9 

3 10.4 13 8.4 

4 10 9.6 10.2 

5 9.4 8.2 11.6 

5 

1 8.8 8 6.6 

2 9.6 8.6 9 

3 11.2 8 9.2 

4 11.2 10.2 12 

5 11.2 9 10 

6.1. Mutation effect 

The reference value of n [%] was received without any 

genetic operation and is 5.6 (Table 2, row 1). The results 

received with GO are better almost in any case. It can be 

seen that the higher number of mutation operations, the 

better the performance is (Tables 2). 

For better results representation three graphs are provided. 

Their color map was set to show green - blue when the 

results are worse than reference value and yellow to red 

otherwise (Fig. 5 – 7). 

The outcome with different mutation distribution is 

asymmetric. Results received without crossover operation 

have higher values along with the Mutation paths axis (Fig. 

5). However, results received with two crossover pairs have 

higher values along with the Mutations per path axis (Fig. 7). 

I.e. with no crossover pair certain amount of mutation 

operations should be spread out among more paths, but with 

2 crossover pairs concentration of mutation operation on less 

paths tends to perform better. This behavior may be caused 

by the execution order of the GO: crossover is applied after 

mutation, thus crossover may re-distribute mutation 

substrings between more paths. 

The results for one crossover pair show different behavior. 

It does not have the highest value on edges of the surface 

where the highest amount mutation operation is. The highest 

value 13% was received with four mutation paths with three 

mutation operation per path. 

Genetic operations where nearly always feasible; ratio 

accomplished / required mutation operations is 100% and 

for the crossover operation over 99%. 

 

Figure 5. Zero crossover pairs results 

 

Figure 6. One crossover pair results 
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Figure 7. Two crossover pairs results 

6.2. Crossover effect 

In order to determine the effect of crossover operation 

crossover rate was let to grow up to 100% (Table 3). To 

prevent interference, no mutation operation was allowed. 

The results vary (Fig. 8); the highest output was gained 

for 60% of crossover rate. Beyond 60% threshold ants 

foraging behavior is suppressed by crossover overload. As 

the crossover rate increases, ratio accomplished / required 

operation decreases (Fig. 9). This is caused by the search 

space dimension. It is too large for ten ants to meet. 

GO does not affect the length of the search process. The 

mean value of the cycle when the best value was found is 

109.081 with standard deviation 2.617. 

Table 3. Crossover operation results 

Crossover rate [%] 
Probability of finding 

global optimum [%] 

Valid crossover 

operations [%] 

0 5.6 N/A 

20 4 0.99953 

40 6.2 0.99498 

60 7.4 0.96859 

80 5 0.88374 

100 5.8 0.73246 

 

Figure 8: Crossover operation quantity vs. performance 

 

Figure 9: Crossover operation quantity vs. valid operations 

7. Conclusion 

It has been proved that genetic operations increase ACO 

algorithm performance. Even small number of any genetic 

operation causes positive effect. 

Limit of crossover is 60% of crossover rate. The higher 

the crossover rate, the lower the accomplished / required 

ratio. Mutation operation causes better results than crossover 

operation. This can be explained by the nature of the 

mutation operation which creates new paths whilst crossover 

operation can only combine already existing solutions. 

 The higher amount of mutation operations the higher the 

performance gain is. No limit for amount of mutation 

operation was found during the simulation. Without 

crossover operation distributed mutation operation has 

better performance, but with two crossover pairs 

concentrated mutation operation on less paths tends to 

perform better. The impact of the GO execution order on the 

mutation operation distribution needs to be verified. 

The results are promising; GO improves ACO algorithm 

performance more than twice. Further research and more 

experiments are needed to determine the distribution and 

optimal amount of mutation operation with respect to the 

number of ants and length of the paths. 
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