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Abstract: This paper provides a new approach to the multi-robot path planning problem predicting the position of a dy-

namic obstacle which undergoes linear motion in the given workspace changing its direction at regular intervals of time. 

The prediction is done in order to avoid collision of the robots with the dynamic obstacle. First the work is done in simula-

tion environment then the entire work has been implemented on Khepera II mobile robot. The performance of the above men-

tioned approach has been found to be satisfactory compared to the classical non-predictive approaches of dynamic obstacle 

avoidance. 
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1. Introduction 

Mobility is an important aspect of modern robots. Sever-

al approaches to mobility management of a mobile robot 

have been studied over the last four decades. Some of these 

popular methods for path planning include Voronoi Dia-

gram, A* Heuristic Algorithm, Neural Networks, Fuzzy 

algorithms. Since the beginning of this decade, researchers 

are taking keen interest to study the scope of optimization 

algorithms in mobility management of robots. The justifica-

tion of using optimization techniques arises particularly 

when the motion planning of a number of robots are consi-

dered together in the same workspace. This paper attempts 

to overcome one fundamental problem in multi-agent ro-

botics. 

One interesting problem in multi-agent robotics is Multi-

robot Motion planning[1][2], where the robots have to de-

termine their trajectory of motion from predefined starting 

point to fixed goal point without hitting any obstacles in the 

environment. Most of the multi-robot motion planning al-

gorithms developed so far only considered static obstacles. 

The multitude of the Multi-robot Motion Planning problem 

grows significantly, when one or more dynamic obstacles 

are present in the scenario. This paper addresses one such 

problem of Multi-robot Motion Planning taking into con-

sideration the predictive motion of the dynamic obstacle. 

The prediction logic employed here assumes a linear mo-

tion of the dynamic obstacle within a short span of time. 

When the speed of the dynamic obstacle is relatively slow-

er than that of the robots, we may presume that the linear 

motion of the obstacle is maintained within two successive 

sampling instances of the obstacle by the robots. This con-

sideration provides a new opportunity to formulate the mul-

ti-robot motion planning as an optimization problem. 

The formulation of the problem is concerned with de-

signing an objective function considering two important 

issues. The first issue refers to determining the minimum 

distance between each robot and its respective goal without 

hitting any static obstacle during the trajectory planning by 

the robot team. The second issue deals with maximization 

of the distance between a dynamic obstacle and its nearest 

robot. These two objectives are put together to construct a 

single objective optimization function, which here has been 

optimized by the well known Particle Swarm Optimization 

(PSO) algorithm. 

After predicting the location of the dynamic obstacle, the 

robot takes the decision of the next position accordingly, 

the advantage being improved efficiency. The distributed 

approach to solve the path planning problem has been un-
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dertaken in this paper. Here we consider n-iterative algo-

rithms for n robots, and the thi algorithm determines the 

next position for the thi robot, satisfying the necessary con-

straints. 

The rest of the paper is organized as follows. Section II 

considers a formulation of the problem presuming static 

and dynamic obstacles separately, and then combines them 

together to construct a general objective function for the 

problem. The prediction approach has been incorporated 

here. The principle of PSO is outlined in section III. Sec-

tion IV provides the algorithm to solve both the static and 

dynamic obstacle avoidance problem by using PSO. Com-

puter simulation over simulated platforms is given in sec-

tion V. Online experimental details with snapshots as well 

as the overview of the Khepera Robot used in the experi-

ment are discussed in section VI. Performance analysis 

with respect to two standard metrics is undertaken in sec-

tion VII. Inferences drawn from the paper are given in sec-

tion VIII with a tinge of references at the end. 

2. Formulation of the Problem 

Here we evaluate the next position of the robots from 

their current position in a given robot’s world map with a 

set of static obstacles and one dynamic obstacle. A set of 

principles listed below is first developed to formalize the 

path-planning problem by a uniform treatment. 

A. Pre-assumptions 

Current position of each robot is known with respect to a 

given reference in the Cartesian-coordinate system. The 

robots have a fixed set of actions for motions. A robot can 

select one action at a given time. Obstacles are detected by 

their colour which is known to the robots. The robots can 

come to know of the next position of the dynamic obstacle 

by using a prediction approach. 

B. Principles 

i. A robot always attempts to align itself towards the 

goal position by calculating a optimal path [3] call-

ing PSO. 

ii. In each step the robot tries to predict the location of 

the dynamic obstacle moving in a linear path. The 

introduction of the linearity in the path for a small 

amount of time of the dynamic obstacle is done so 

that the prediction-based approach is satisfied. 

iii. On detecting a static obstacle near it, the robot de-

viates from its current position to a next obstacle 

free position following a minimal path obtained by 

PSO algorithm. 

iv. After predicting a dynamic obstacle, the robot has 

to move from its current position to a next obstacle 

free position following a minimal path obtained by 

the PSO algorithm. 

Let ( , )i ix y be the current position of the thi robot at 

time t, ' '( , )
i i
x y be the next position of the same robot at 

time (t+1). iV  be the current velocity of the thi  robot. 

Let  ( , )ig igx y  be the goal position of the thi  robot. 

It is evident from Fig.1 that 

 

Figure 1. Current and next position of the 
thi robot. 

' cosi i i ix x v tθ= + ∆                       (1) 

' sini i i iy y v tθ= + ∆                          (2) 

Where t∆  =1, 

C. Distributed Planning 

The constraint for the thi robot can be formulated as fol-

lows: 

Let F be an objective function for the thi robot that de-

termines the length of the trajectory. For n  number of ro-

bots, then 

2 2{ {( cos ) ( sin ) }}

1

F

n
v x v x y v y
i i i i ig i i i ig

i

θ θ

=

+ + − + + −∑

=

  (3) 

The robot is predicting its next position avoiding the dy-

namic obstacle. The objective function incorporating the 

prediction principle is calculated as 

2 2

1=

=

+ − + −∑

'

( ) ( )
n

p ig p ig

i

F

F x x y y
       (4) 

Where ( , )p px y  is predicted next position of the dynam-

ic obstacle. Now '
'

p i
x x u t= + ∆  and ' 'p i

y y v t= + ∆ . 

Where ( , )i ix y  is the current position of the dynamic ob-

stacle. 

∆ 't  is the sampling time where [ ] / [ ]t arr i arr j∆ = , in 

arr[i] the total time needed for the movement of the dynam-

ic obstacle is kept and the number of steps undertaken by 

the dynamic obstacle is stored in arr[j]. Here u stands for 

the velocity of the dynamic obstacle. The prediction made 

here is linear because extrapolation of the path of the dy-

namic obstacle is made considering the direction of motion 

constant over a given interval of time. The distance be-

tween robots at any point of time should not be less than a 

predefined threshold to avoid collision; this logic is used as 

a primary constraint to this problem. 

In fig.3 iD  represents the current position of the dynam-

ic obstacle [8] whereas pD  denotes the predicted position 
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of the same. R denotes the robot centroid whereas G de-

notes the goal centroid. The distance between the dynamic 

obstacle’s predicted position and robot’s current position is 

to be maximized to avoid any collision. Thus it becomes an 

objective function maximization problem. Let ijd be the 

distance between thi  and 
thj  robots’ current positions, 

' 'i j
d be the distance between thi  and 

thj robots’ next posi-

tions, then the constraint that the robot will not hit its kin is 

given by 2' 'i j
d r− ≥∈ , where r denotes the radius of the 

robots and ∈  (>0) denotes a small threshold. 

 

Figure 3. Linear prediction of the path of the dynamic obstacle and the 

maximization of the Euclidean distance between robot current position 

and predicted next position of dynamic obstacle. 

 

Figure 4. Diagram showing the constraint such that no two robots can 

collide with each other 

The multi-robot path-planning as an optimization prob-

lem includes an objective function, concerning minimiza-

tion of the Euclidean distance between the current positions 

of the robots with their respective goal positions, con-

strained by obstacles and other robots on the path. Thus, the 

constrained optimization problem in the present context for 

the thi  robot is given by, 

2 2

1

min

2 2{ (( cos ) ( sin ) )}

1

( 1) / 2
2( (0,( (2 ))) /

' '
' ' 1

/ ( ( )) 1/ ( ) ( )

i

i

n

dy p ig p ig

i

n
F v x v x y v y

i i i i ig i i i ig
i

n n
f d r f d
dp i j st i obs
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f n R r x x y y

θ θ

ε
∀

−
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 (5) 

where dpf (>0) and stf (>0) denote scale factors to the 

second and third terms in the right hand side of expression 

(5) i obsd −  represents the distance of the obstacle from the 

i-th robot, R is the radius of the dynamic obstacle. 

1. Static obstacle 

Consider the robot Ri is initially located at ( , )i ix y .It 

needs to select point ' '( , )
i i
x y , i.e. next position of the robot, 

such that the line joining { ( , )i ix y , ' '( , )
i i
x y } and 

{ ' '( , )
i i
x y ( , )g gx y } do not touch the obstacle, as shown in 

Figure. 2. This is realized with PSO algorithm, such that it 

will always select a minimal path [9] to reach the respec-

tive destinations. To take case of static obstacles in the en-

vironment, we add one penalty function to the constrained 

objective function (5).Thus the present constraint optimiza-

tion problem is transformed to – 

' '

' '

2 2

1

( 1)/2
2

1

(( cos ) ( sin ) )

(min(0, ( (2 ))))

n

i i i i ig i i i ig

i

n n

dp sti j
i j

F v x v x y v y

f d r f

θ θ
=

−

=

= + + − + + −

+ − + ∈ +

∑

∑
 (6) 

Where stf  = positive constant when a static obstacle is 

present on the planned local trajectory = 0, otherwise. 

2. Dynamic obstacle 

The main objective of the prediction principle is to antic-

ipate the next position of the dynamic obstacle [4]. Thus 

the robot can take action accordingly and call PSO to move 

back to its optimal path. 

Consider the robot Ri is initially located at ( , )i ix y .It 

needs to select point ' '( , )
i i
x y , i.e. next position of the robot, 

such that the line joining { ( , )i ix y , ' '( , )
i i
x y } and 

{ ' '( , )
i i
x y , ( , )g gx y } do not touch the obstacle, as shown 

in fig. 2. 

 

Figure 2. Selection of ( )' ',
i i

x y from ( ),
i i

x y to avoid collision with an 

obstacle. 

To take case of dynamic obstacles in the environment, 

we add one maximization function. Thus the present con-

straint optimization problem is transformed to 

2 2

1

2 2

1

(( cos ) ( sin ) )

1/ ( ) ( )

n

i i i i ig i i i ig

i

n

p ig p ig dy

i
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−
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 (7) 



 Automation, Control and Intelligent Systems 2013, 1(2) :16-23 19 

 

dyf = a positive constant when a dynamic obstacle is pre-

dicted  =0, otherwise. 

3. The Particle Swarm Optimization 

The PSO scheme has the following algorithmic parame-

ters: 

1) maxV or maximum velocity which restricts )(tV
i

�

with-

in the interval [ ]maxmax ,VV− . 

2) An inertial weight factor ω. 

3) Two uniformly distributed random numbers φ1 and φ2 

which respectively determine the influence of )(tp
�

and 

)(tg
�

on the velocity update formula. 

4) Two constant multiplier terms C1 and C2 known as 

self confidence and swarm confidence respectively [5]. 

Initially the settings for )(tp
�

and )(tg
�

are 

)0()0()0( xgp
���

==  for all particles. Once the particles are 

initialized, the iterative optimization process begins where 

the positions and velocities of all the particles are altered 

by the following recursive equations. The equations are 

presented for the d-th dimension of the position and veloci-

ty of the i-th particle. 

( 1) ( ) ( ( ) ( ))
1 1

( ( ) ( ))
2 2

( 1) ( ) ( 1)id id id

V t V t C P t X t
id id id id

C g t X t
d id

X t X t V t

ω ϕ

ϕ

+ = + −

+ −

+ = + +

  (8) 

The first term in the velocity updating formula represents 

the inertial velocity of the particle. The second term 

involving )(tP
�

represents the personal experience of each 

particle and is referred to as ‘cognitive part’. The last term 

of the same relation is interpreted as the ‘social term’ 

which represents how an individual particle is influenced 

by the other members of its society. Typically, this process 

is iterated until some acceptable solution has been found by 

the algorithm. Once the iterations are terminated, most of 

the particles are expected to converge to a small radius 

surrounding the global optima of the search space. 

4. Solving the Constraint Optimization 

Problem Using Pso 

Pseudo Code: 

Input: Initial position ( ii yx , ), goal position ( ),ig igx y

and velocity iv  for n robots where 1<=i<=n and a thre-

shold value €. 

Output: Trajectory of motion iP  for each robot iR  from 

( ),i ix y  to ( ),ig igx y  

Begin 

Set for all robot i 

icurr ix x← ; icurr iy y←  //current position in both x 

& y coordinate of thi robot// 

For robot i=1 to N 

Repeat  

Check obstacle ( ) //at each ( , )icurr icurrx y the robot ro-

tates 360º with radius n*(R+r) [n >1] to search for ob-

stacle// 

IF static obstacle 

Move away and call PSO // to find the next obstacle free 

optimal position // 

Predict dynamic obstacle’s next position 

Compute sampling time // delta t that is time taken to 

undergo one step// 

Update xp // next position of obstacle(dynamic) // 

'
p ix x u t= + ∆  

'
p iy y u t= + ∆ . 

Maximize the distance between robot(current->pos) and 

dynamic obstacle(predicted next->pos). // to avoid colli-

sion// 

Call PSO 

Move to -> ( , )inext inextx y  ; 

// moves to next obstacle free position. // 

icurr inextx x← , icurr inexty y← ; //update the position// 

Until ε≤− iGicurr _  // icurr _  = ( icurricurr yx __ , ), Gi = 

( igx , igy )// 

End for; 

End. 

Procedure PSO 

( ), ,icurr icurrx y pos vector−  

Begin 

initialize 10 particles with random position and velocity; 

For k < Maxiter do 

Begin 

1. update i
V  and i

X i by (8); 

2. determine local best position and global best position 

of 

the particles; 

End for; 

Update: 

riicurricurr vxx θcos+← −−  

riicurricurr vyy θsin+← −−  

Return; 

End. 

5. Experiments Using Computer Simu-

lation 

In this section, we provide the results of computer simu-

lations of the proposed scheme of multi-robot motion plan-

ning avoiding both static and dynamic obstacles. 
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The multi-robot path-planning is realized in Turbo C en-

vironment on a Pentium processor. The number of robots (n) 

was varied from two to fourteen and the performance of the 

system was evaluated. The static obstacles are represented 

by Dark gray colour while the dynamic obstacles are 

represented by Orange colour in the world-map. The fol-

lowing figures show the screenshot of the program. The 

configuration of the world map with robots, dynamic ob-

stacles and five static obstacles at different instant of time 

during the execution of the code is depicted in the follow-

ing figures. The number of robots and the velocity of robots 

are changed to get different conditions and make sure in no 

cases the robots collide with any obstacle. The trajectories 

of the robot path avoiding both static and dynamic ob-

stacles are clearly visible. The intermediate positions as 

well as the final position of the world map are shown where 

the robots are seen to reach their predefined goal safely. 

 

Figure 5. Screenshot showing the Collision of the robot J with the orange 

coloured Dynamic obstacle in the world-map in classical non-prediction 

approach. 

 

Figure 6. Screenshot showing the path of Dynamic obstacle avoidance by 

the robot J in the world-map when 10 robots together are considered and 

prediction principle is used. 

 

Figure 7. Screenshot showing the Collision of the robot J with the orange 

coloured Dynamic obstacle in the world-map when 12 intelligent robots 

are considered at a time, in classical non-prediction based approach. 

 

Figure 8. Screenshot showing the path of Dynamic obstacle avoidance by 

the robot J and trajectories of eleven other robots in the world-map when 

12 robots together are considered and prediction principle is undertaken. 

 

Figure 9. Screenshot showing the complete path of the robots in the world 

map after the robots reached their goals and the dynamic obstacle has 

passed. 

6. Experiment Using Khepera-Ii Robot 

Khepera II as shown in figure 10 is a miniature robot of 

diameter 7 cm and equipped with 8 in-built infrared prox-

imity sensors, and 2 relatively accurate encoders for the 

two motors. The range sensors are positioned at fixed an-

gles and have limited range detection capabilities[6][7]. 

The sensors are numbered from 0 to 7, with the leftmost 

sensor designated by 0, and the rightmost by 7. The sensor 

numbered 7 and 8 are on the back side of Khepera robot 

and not used in this experiment. The Khepera model we 

used is a table-top robot, connected to a workstation 

through a wired serial link.  

 

Figure 10. The Khepera II Robot. 

Now during online execution of the robot path traversal, 

both the robots are placed in their initial positions. They 
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have to reach their goal avoiding all static and dynamic 

obstacles present in the world-map. The dynamic obstacles 

are pink in colour and move in the world map randomly. 

Sensors and camera are the main source of information. 

These data acquisition tools are already embedded in the 

robot.  

The optimal path to the goal is decided by the PSO algo-

rithm and static obstacles are detected by the sensory value. 

Here we have taken account of the first six sensors of the 

Khepera-II Mobile Robot. So the sensory data set is given 

by R={R0,R1,R2,R3,R4,R5}.The robots are programmed in 

such a way that whenever a static obstacle is in the robot’s 

vicinity the reflected sensory value is more than the prede-

fined threshold which denotes presence of obstacle. So the 

robots deviate from their path to avoid the obstacle and 

then again come back to its optimal path thus avoiding col-

lision. 

The dynamic obstacle as well as the kin is detected by its 

colour. The vision system generates information corres-

ponding to the result of the processed image captured by 

the camera of the functional robot. After the online capture 

of images by the Khepera robot the set of images are sent 

to the PC for colour recognition. This is done so that the 

co-operating agent can recognize its kin as well as dynamic 

obstacle. The colour is expressed as an RGB triplet (r,g,b) 

each component of which can vary from 0 to a defined 

maximum value. 

In this problem, the dynamic obstacle is pink in color 

and is identified through color image processing using Vec-

tor Distance approach. The images of.bmp format being of 

pink colour, the individual components of the RGB triplet 

will result in a value which is more than the predefined 

threshold for pink colour. Now, while searching for pink 

the program in the PC connected to the co-operating robot 

sets a tolerance or a threshold so that the images or colour 

close to pink can be recognized. The same procedure is 

applied for kin recognition which is done by identifying 

black colour of khepera robot. The only difference is that 

the images of.bmp format being of black colour, the indi-

vidual components of the RGB triplet will result in zero 

value ideally. 

That is the system works for the following situations in 

case of kin recognition: 

_close toI P P∀ ∈ ∪  

where I represents the set of images captured and B de-

notes pink set and _close toP near to pink. 

In practical world, the nearness factor is considered to 

remove the constraint of ideality of any particular colour. 

The Euclidian distance between those two vectors is 

computed as follows: 

2 2 2( ) ( ) ( )D R t G t B t= − + − + −      (9) 

where t is the tolerance limit considered for near to pink 

factor. 

The pseudo code for dynamic obstacle recognition is 

given below. 

Pseudo-code : 

Begin 

{ 

For each pixel 

{ 

Compute the distance between that pixel and the refer-

ence color (D)(Pink and black here) //calculation of dis-

tance vector// 

If D < Threshold //Thresholding operation// 

Then Current pixel is accepted as pink or black 

//selection of pink and black colour 

else 

Current pixel is not accepted 

 } 

End 

The real time experiment of multi-robot motion planning 

was supposed to be done with varying number of robots 

from two to twelve as done in case of simulation, but here 

for the sake of simplicity and ease of experimental set-up 

only two robots are considered. The white colored objects 

are the static obstacles, the pink colored ball being the dy-

namic obstacle is moved randomly in the world map. Fig-

ure 11 to 14 shows the actual image of the complete world 

map during the time of path planning in real environment. 

 

Figure 11. The complete world-map showing the initial position of the 

Robots (R), the static obstacles and the dynamic obstacle, the goal (G) 

position of the respective robots and the boundary. 

 

Figure 12. The complete world-map showing the Robots (R) during online 

motion, here the robot-1 detects the dynamic obstacle in front of it as a 

result it will turn 90o to its right and continue its motion. 

 

Figure 13. The complete world-map showing the Robots (R) during online 

motion, its trajectory of motion of the robot-1 isshown is red line and that 

of of robot-2 is shown in blue line,the obstacles, the goal (G) and the 

boundary 
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Figure 14. The complete world-map showing the Robot(R) has reached its 

goal (G) successfully. The trajectory of the path is also shown. 

7. Performance Analysis 

The performance of the prediction based system can be 

evaluated in many ways. Performance evaluation is a wide 

topic, and covers many techniques to measure the quality 

of the system. Different performance evaluation metrics 

covers different areas, which include how algorithms cope 

in different physical conditions in the scene, i.e. changing 

number of robots and obstacles, changing velocity of the 

robots, change in position of the obstacles etc. Two metrics 

average path deviation and average uncovered target dis-

tance have been considered for evaluating the performance 

of the system. 

Average Uncovered Target Distance (AUTD) 

Given a goal position iG  and the current position iC of 

a robot on a 2-dimensional workspace, where iG  and iC

are 2-dimensional vectors, the uncovered distance for robot 

i  is || ||i iG C− , where || . || denotes Euclidean norm. In-

itially when the robots start from its starting position the 

uncovered Target Distance is maximum and it decreases as 

the robots trends towards their respective goals. As soon as 

the robots reach their goals UTD becomes zero. For n  

robots, uncovered target distance (UTD) is the sum of 

i iG C−  i.e. UTD = 
1

n

i i

i

G C
=

−∑ . 

Now, for k runs of the program, the average of UTDs is 

evaluated and it is called the average uncovered target dis-

tance (AUTD). For all experiments conducted in this study, 

k = 10 is considered. 

Average Path Deviation (APD) 

When no obstacles are present in the world map then the 

robots will follow the minimum path decided by the PSO 

algorithm. Whenever static and dynamic obstacles are in-

troduced in the world map the robots deviate from their 

optimal path in order to avoid collision. Average path devi-

ation is the difference between these two paths. For more 

number of robots the average path deviation will be the 

sum of individual APD for separate robots. The average 

path deviation should be as low as possible for better per-

formance. 

Let the average time taken by the robots to reach their 

goal in presence of no obstacle be t. Now, if the optimal 

path traversed by the robot be traversedD  and the actual path 

between the robot and the goal in the presence of static and 

dynamic obstacles be +static dynamicD D , the Average Path 

Deviation is given by. 

| ( ) |= − +traversed static dynamicAPD D D D  

Figure.15 and figure.16 reflect that the uncovered target 

distance increases with the increasing number of robots. 

This happens due to the congestion in the path of the robots 

at the initiation of the iteration with more number of robots. 

The initial position of the dynamic obstacle is different in 

figure.15 from figure.16. So the predicted position of the 

dynamic obstacle is also different in each case. As a result 

the trajectories of the robots are also different in each case. 

 

Figure 15. Plot of Uncovered Target Distance(UTD) vs Steps with number 

of robots as parameter and initial co-ordinate of the dynamic obstacle 

(200,300). 

 

Figure 16. Plot of Uncovered Target Distance (UTD) vs Steps with num-

ber of robots as parameter and initial co-ordinate of the dynamic obstacle 

(50,300). 

For a fixed uncovered target distance the number of steps 

undertaken by the robots decreases with increasing velocity 

of the robots, which is quite evident from the figure 17 and 

figure 18. This happens because robot with more speed 

reaches the goal fast. 
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Figure 17. Plot of Uncovered Target Distance(UTD) vs Steps  with robot 

velocity as parameter and the initial co-ordinate of the dynamic obstacle 

(200,300). 

  

Figure 18. Plot of Uncovered Target Distance vs Steps with robot velocity 

as parameter and the initial co-ordinate of the dynamic obstacle (50,300). 

The bar chart in figure.19 clearly shows that the number 

of steps covered by the robot to reach their goal in 

prediction based approach is much less than the approach 

without prediction. 

 

Figure 19. Bar chart showing performance evaluation of robots with and 

without prediction. 

This proves the excellence of our work thereby 

increasing the efficiency of the system of dynamic obstacle 

avoidance thereby reducing the risk factor of collision. 

8. Conclusion 

We have introduced the concept of prediction to 

determine the next position of the dynamic obstacle. This 

prediction principle is also employed in online path 

planning using Khepera robot as well as in simulation 

apporach.In both the cases, the robots reach their goal 

without hitting any obstacle. The experimental results are 

in conformation with the fact that the prediction logic helps 

in minimizing the steps of motion of the robots, which 

encounter the dynamic obstacle within its trajectory 

compared to the non-prediction based approach. The 

prediction logic helps the robot to determine the location of 

the dynamic obstacle and plan its path accordingly 

minimizing the time of traversal. Thus both the number of 

steps as well as the execution time is minimized in the 

above problem. This is where our approach on multi-agent 

path planning amidst both static and dynamic obstacles 

supersedes the other works on multi-agent systems already 

existing in this domain. 

 

References 

[1] J. Kennedy, R. Eberhart, “Particle swarm optimization”, In 
Proceedings of IEEE International conference on Neural 
Networks. (1995) 1942-1948. 

[2] Jayasree Chakroborty, Amit Konar, Aruna Chakroborty, 
“Multi-robot co-operation by Swarm and Evolutionary Al-
gorithms”. 

[3] M. Ryan, “Graph Decomposition for Efficient Multi-robot 
Path planning,”in Proceedings of the 20th International Joint 
Conference on Artificial Intelligence, pp. 2003-2008, Jan. 
2007. 

[4] A.Fujimori and S. Tani, ‘A navigation of mobile robots with 
collision avoidance for moving obstacles’, in Proc. IEEE In-
ternational Conference on Industrial Technology, Bangkok, 
Thailand, Dec. 2002, pp. 16. 

[5] F. van den Bergh and A.P. Engelbrecht, “Cooperative learn-
ing in neural networks using particle swarm optimizers,” 
South African Computer Journal, 26:84-90, 2000. 

[6] T. Tsubouchi and M. Rude, “Motion planning for mobile 
robots in a time-varying environment”, J. of Robotics and 
Mechatronics, Vol. 8, No. 1, pp. 15-24, 1996. 

[7] S. Ishikawa, “A method of indoor mobile robot navigation 
by using fuzzy control”, in Proc. IEEE/RSJ Int. Workshop 
on Intelligent Robots and Systems, pp. 1013-1018, 1991. 

[8] F. Kunwar, F. Wong, R. Ben Mrad, B. Benhabib, “Guidance-
based online robot motion planning for the interception of 
mobile targets in dynamic environments”, Journal of Intelli-
gent and Robotic Systems, Vol. 47, Issue 4, pp. 341-360, 
2006. 

[9] J. Minura, H. Uozumi, and Y. Shirai, “Mobile robot motion 
planning considering the motion uncertainty of moving ob-
stacles”, in Proc. IEEE Int. Conf. on Systems, Man, and Cy-
bernetics, Tokyo, pp. 692-698, 1999. 

 


