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Abstract: Diabetes is a human disease that can lead to blindness, strokes, and amputations of people’s limbs. The effects of
diabetes are not limited to the sickness it causes in the human body, it also has a major influence on the worldwide economy, as
evidenced by the fact that over 500 billion USD is spent each year on the diagnosis, care, and treatment of diabetes. Diabetes is
gradually becoming a menace in Kenya, considering that the number of deaths from diabetes and diabetes-related illnesses have
increased in the recent time. With the rapid increase in the reported diabetic cases, it is only a matter of time before the Healthcare
facilities and resources become overburdened. This study investigates the effect of a fixed number of available health resources
on the progression of diabetes. To represent the dynamics of diabetes with a constant hospitalization rate, a system of ordinary
differential equations is formulated. The model is established to be well-posed, positive, and bounded, and the local stability
of the equilibrium points is established. The reproduction number is calculated using the next generation matrix. The model is
numerically solved and the results are graphed using the explicit Runge-Kutta (4,5)-th order. Improvements in the susceptible
class’s lifestyle quality diminish migration from the susceptible subpopulation to the diabetic population.
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1. Introduction
Chronic illnesses emerge gradually from a combination of

genetic, environmental, and behavioural variables. Diabetes,
cancer, chronic respiratory disorders, and cardiovascular
difficulties are the four groups of noncommunicable diseases
(NCDs). More than 41 million people die from NCDs each
year, with low- and middle-income countries recording 85
percent of these deaths [1]. Food consumed by humans
is turned into glucose, which is then delivered into the
bloodstream. When the circulation glucose level rises, the
pancreas receives a signal to secrete insulin. Insulin turns
glucose into useable energy that other cells can use. Diabetes
develops when the insulin-glucose-glycogen regulation system

fails. The pancreas either generates too little insulin, which
is inadequate to transform the body’s sugar, or produces too
much unwanted insulin [2, 3].

Diabetes is the leading cause of kidney illness,
cardiovascular disease, blindness, and lower limb amputation
[4, 5]. Diabetes presently affects 422 million people globally,
up from 180 million in 1980.

In 2014, low-income countries had a prevalence of 7.4%,
which was higher than the prevalence of 7.0% in high-income
countries. Diabetes prevalence has risen faster in low- and
middle-income countries, and it is now highest in upper
middle-income countries [6]. Like other developing nations,
Kenya is dealing with the growing diabetes epidemic. Diabetes
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prevalence in the nation is thought to be around 3.3%. Unless
this trend is reversed, this number is predicted to increase to
4.5 percent by 2025.

In 2015, Kenya reported over 8,700 diabetes-related
fatalities. According to the 2015-2020 survey by the National
Strategy for the Prevention and Control of NCDs, diabetes
is one of the four most common chronic illnesses in Kenya,
along with a strategy for health system reform, risk factor
reduction, and promotion of good health. The National
Hospital Insurance Fund (NHIF) has also lately created
a specific chronic sickness care package. Despite these
national efforts, sub-county and county-level diabetes care
infrastructures remain unreliable, and there is a scarcity of
diabetes data [7, 8]. Although the prevalence of diabetes
in Kenya is under-reported, it is estimated that up to 60%
of diabetics in the country go untreated [9]. Despite the
devolution in the Kenyan system of government in 2010
where counties are given the exclusive rights to oversee their
health system, only very miniature progress has been made
in the country towards universal health coverage (UHC) [10].
According to Otieno et al. [11], 68 percent of Kenyans’ basic
health needs are not being met.

Ajmera et al. [12] showed that mathematical analysis
of diabetes has been effective. Li et al. [13] modified
the mathematical model for the dynamics of diabetes by
introducing the law of conservation in time-delay equations.
The findings, however, are in agreement with the physiological
observations but with more insightful information. Zhang et al.
[14] considered the effects of saturated treatment on the trend
of the diabetic population and the results show that treatment
rate can control the diabetic population. Karachaliou et al. [3]
offered a diabetes prevention model and highlighted that good
diabetes prevention and diabetic patient care can help lower
the burden of such illnesses in low-income countries. The
rates of admission of diabetic patients into Ethiopian hospitals
were mathematically modelled by Regassa and Tola [15] and
using the parametric survival analysis, the admission rate for
Ethiopia was estimated as 9.85 per 1000 persons per year. [16]
proposed a mathematical model for the dynamics of diabetes
and solved model using the homotopy analysis method. Nasir
and Daud [17] compiled several differential equations on the
dynamics of diabetes and suggested an area for further is to
consider how available resources may limit the total number of
treated diabetics with complications. With this motivation, this
study explores the effects of fixed unchanging health resources
on the diabetic population.

A mathematical model for treating diabetes and its
repercussions in an environment with constant resources is
developed and tested in this work. This study explores the
impact of increasing recovery rates, healthy lifestyle, constant
hospitalisation rate on the population.

2. Methodology

2.1. Formulation of the Mathematical Model

Figure 1 shows the flowchart of the model under
consideration. The population is compartmentalised into
four classes; the Susceptible class S(t), Diabetic class
D(t), Complicated class C(t), and Hospitalised class H(t).
The susceptible class are the non-diabetics who are can
become diabetic, the diabetic class are those who are already
diabetic, the complicated class are diabetic individuals who
have developed complications, and the hospitalised class are
complicated class that are in the hospital. Suppose that (i)
healthy people have healthy children, (ii) diabetic adults have
either healthy or infected children, and (iii) complications
arising from diabetes can be treated, but not diabetes.

Λ α (1− ρ)D

S
µS

(1−ε)βSD
N

D
ωD

µD
C

αρD
(µ+ δ)C

γC

H

σH

(µ+ η)H

Figure 1. Flowchart for the model.

α is the birth rate, ρ is the proportion of diabetic births, ω
is the rate of developing complications due to diabetes, δ is
the proportion of death from complication, γ is the per capita
hospitalization rate, σ is the recovery rate from complications,
η is mortality rate among the hospitalised individuals, µ is
taken as the natural mortality rate, and ε is the lifestyle
incidence rate (ε = 0 represents the case of no impacted
lifestyle and ε = 1 is the highest lifestyle standards). β
represents the proportion of interactions leading to incidence,
and hence, the total incidence due to lifestyle is

(1− ε)βSD
N

.

The equations governing the dynamics shown in figure 1 is

dS

dt
=Λ + α (1− ρ)D − (1− ε)βSD

N
− µS, (1)

dD

dt
=αρD + (1− ε)βSD

N
+ σH − ωD − µD, (2)
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dC

dt
=ωD − γC − δC − µC, (3)

dH

dt
=γC − σH − ηH − µH. (4)

2.2. Qualitative Analysis

2.2.1. Reproduction Number
The disease free equilirbium point is

E0 =

(
Λ

µ
, 0, 0, 0

)

and the endemic equilibrium

E1 = (C1, D1, H1, S1) .

where

D1 = C1

ω (γ + δ + µ) , H1 = γC1

σ+η+µ , (5)

S = Λ
µ +

(
(α−ω−µ)(γ+δ+µ)

ω + σγ
σ+η+µ

)
C1

µ , (6)

The reproduction number R0 is determined using the next
generation matrix method as follows (see [18, 19, 20, 21]). Let
the matrices F and V represent the new infections and negated
outward transitions from these compartments respectively,
then

F =

(
(1− ε)β SDN

0

)
, V =

(
−σH + (ω + µ− αρ)D
−ωD + (γ + δ + µ)C

)
from which

(∇F )E0
(∇V )

−1
E0

=

(
(1−ε) Λβ

Nµ

(ω+µ−αρ) 0

0 0

)
.

and the eigenvalues are

λ1 = 0, λ2 =
(1− ε) Λβ

Nµ

(ω + µ− αρ)
, with ω + µ− αρ > 0

Finally, the basic reproduction number is

R0 =
(1− ε) Λβ

Nµ

(ω + µ− αρ)
.

2.2.2. Local Stability of the Equilibrium Points
According to the formulations of Oke and Bada [22], the Jacobian matrix for the system (1 - 4) is

J =


− (1−ε)βD

N − µ α (1− ρ)− (1−ε)βS
N 0 0

(1−ε)βD
N αρ+ (1−ε)βS

N − ω − µ 0 σ
0 ω −γ − δ − µ 0
0 0 γ −σ − η − µ

 . (7)

Evaluating J at E0, we have

J0 =


−µ α (1− ρ)− (1−ε)βΛ

Nµ 0 0

0 αρ+ (1−ε)βΛ
Nµ − µ− ω 0 σ

0 ω −γ − δ − µ 0
0 0 γ −σ − η − µ


and evaluating at E1, we have

J =


− (1−ε)βD1

N − µ α (1− ρ)− (1−ε)βS1

N 0 0
(1−ε)βD1

N αρ+ (1−ε)βS1

N − ω − µ 0 σ
0 ω −γ − δ − µ 0
0 0 γ −σ − η − µ

 . (8)

The following theorems verify the local asymptotic stability conditions for the equilibrium points.
Theorem 2.1. The DFE of the system (1 - 4) is locally asymptotically stable if R0 < 1.
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Proof The characteristic equation of the Jacobian at the DFE is |JE0
− λI| = 0, so that∣∣∣∣∣∣∣∣∣

−µ− λ α (1− ρ)− (1−ε)βΛ
Nµ 0 0

0 αρ+ (1−ε)βΛ
Nµ − µ− ω − λ 0 σ

0 ω −γ − δ − µ− λ 0
0 0 γ −σ − η − µ− λ

∣∣∣∣∣∣∣∣∣ = 0. (9)

Letting

ξ2 = (γ + δ + µ+ σ + η + µ)− (1− ε)βΛ

Nµ
+ (ω + µ− αρ) ,

ξ1 = (γ + δ + µ) (σ + η + µ) +

(
(1− ε)βΛ

Nµ
− (ω + µ− αρ)

)
× (γ + δ + µ+ σ + η + µ) ,

ξ0 =− σωγ −
(

(1− ε)βΛ

Nµ
− (ω + µ− αρ)

)
(γ + δ + µ) (σ + η + µ) .

Then the characteristic equation becomes
(µ+ λ)

(
λ3 + ξ2λ

2 + ξ1λ+ ξ0
)

= 0.

The first eigenvalue is λ1 = −µ is negative. Using Routh-Hurwitz criteria, the other three eigenvalues are of negative real parts if (i) ξ2 > 0,
(ii) ξ2ξ1 > ξ0, and (iii) ξ0 > 0. Hence, from (i) it is required that

(γ + δ + µ+ σ + η + µ)− (ω + µ− αρ) (R0 − 1) > 0, (10)

⇒ R0 − 1 < 0 ⇒ R0 < 1. (11)

From (iii),

−σωγ −
(

(1− ε)βΛ

Nµ
− (ω + µ− αρ)

)
(γ + δ + µ) (σ + η + µ) > 0, (12)

and this implies⇒ R0 < 1. Now, from (ii), ξ2ξ1 > ξ0 ⇒ ξ1 > 0 and hence,

− 1 > (1−R0) (ω + µ− αρ)

(
1

γ + δ + µ
+

1

σ + η + µ

)
> (1−R0) (ω + µ− αρ) ,

⇒ R0 − 1 < − 1

ω + µ− αρ < 0 ⇒ R0 < 1

Therefore, the DFE is asymptotically stable if R0 < 1.
Theorem 2.2. The EEP of the system (1 - 4) is locally asymptotically stable if R0 < 1.
Proof Letting B1 = (1−ε)β

N
, then the Jacobian at the EEP E1 is

J1 =


−B1D1 − µ α (1− ρ)−B1S1 0 0
B1D1 αρ+B1S1 − µ− ω 0 σ

0 ω −γ − δ − µ 0
0 0 γ −σ − η − µ

 . (13)

The characteristic equation of J1 is∣∣∣∣∣∣∣∣
−B1D1 − µ− λ α (1− ρ)−B1S10 0 0

B1D1 αρ+B1S1 − µ− ω − λ 0 σ
0 ω −γ − δ − µ− λ 0
0 0 γ −σ − η − µ− λ

∣∣∣∣∣∣∣∣ = 0. (14)

and thus on setting,

A1 =B1D1 + µ− αρ−B1S1 + µ+ ω,

A2 = (B1D1 + µ) (µ+ ω)− µ (αρ+B1S1)− αB1D1,

A3 =γ + δ + µ+ σ + η + µ,

A4 = (γ + δ + µ) (σ + η + µ) ,
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then the characteristic equation becomes
λ4 + ξ3λ

3 + ξ2λ
2 + ξ1λ+ ξ0 = 0,

where

ξ0 = A2A4 − σωγ (B1D1 + µ) ,

ξ1 = A1A4 +A2A3 − σωγ, (15)
ξ2 = A1A3 +A2 +A4, ξ3 = A1 +A3.

By the Routh-Hurwitz criteria, the eigenvalues have negative real parts if

ξ3 > 0,
ξ3ξ2 − ξ1

ξ3
> 0,

(ξ3ξ2 − ξ1) ξ1
ξ3

− ξ3ξ0 > 0, ξ0 > 0. (16)

By substituting (15) into (16), we have;

A1 +A3 > 0; (17)

(A1 +A3) (A1A3 +A2 +A4)− (A1A4 +A2A3 − σωB2)

A1 +A3
> 0; (18)

A2A4 − σωB2 (B1D1 + µ) > 0; (19)

(A1 +A3) (A1A3 +A2 +A4)− (A1A4 +A2A3 − σωB2)

A1 +A3
− (A1 +A3) (A2A4 − σωB2 (B1D1 + µ)) > 0. (20)

Equation (17) is always true. Rewriting equation (18), then we have

(A1 +A3) (A1A3 +A2 +A4)− (A1A4 +A2A3 − σωB2) > 0. (21)

Rewriting equation (19) gives

(A1 +A3) (A1A3 +A2 +A4)− (A1A4 +A2A3 − σωB2)

(A1 +A3)2 (A2A4 − σωB2 (B1D1 + µ))
> 1, (22)

Observe that the inequality (22) if the inequalities (21) and (19) hold. The four conditions therefore are reduced to

A2A4 − σωB2 (B1D1 + µ) > 0 (23)

which implies that

A2A4 > σωB2 (B1D1 + µ) > 0 ⇒ A2 > 0 since A4 > 0

⇒ − (B1D1 + µ) (µ+ ω) + µ (αρ+B1S1) + αB1D1 < 0

⇒ −
(

1− B1S1

ω + µ− αρ

)
µ−B1D1

(µ+ ω − α)

ω + µ− αρ < 0

⇒ (R0 − 1)µ < 0 ⇒ R0 < 1

Therefore, the EEP is asymptotically stable if R0 < 1.

2.2.3. Positivity and Boundedness of Solution
In what follows, we shall show that the solution space for the model equations (1 - 4) is bounded and positive provided S0 > 0, D0 >

0, C0 > 0 and H0 > 0. Setting N = S +D + C +H and summing up the system (1 - 4), then

dN

dt
= Λ + αD − δC − ηH − µN ≤ Λ + αD − µN.

which on solving gives

N ≤ Λ

µ
−
(

Λ

µ
−N0

)
exp (−µt) + α exp (−µt)

∫ t

0

D exp (µτ) dτ
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As t→∞,then N ≤ Λ
µ
. Hence, the solution spaceR is bounded, so that

R =

{
(S,D,C,H) 3 N = S +D + C +H ≤ Λ

µ

}
.

Also, from equation (1 - 4),

dS

dt
= Λ + α (1− ρ)D − (1− ε)β SD

N
− µS ≥ −µS ⇒ S ≥ S0 exp (−µt) ,

dD

dt
= αρD + (1− ε)β SD

N
+ σH − ωD − µD ≥ − (µ+ ω)D ⇒ D ≥ D0 exp (− (µ+ ω) t) ,

dC

dt
= ωD − γC − δC − µC ≥ − (γ + δ + µ)C ⇒ C ≥ C0 exp (− (γ + δ + µ) t) ,

dH

dt
= γC − σH − ηH − µH ≥ − (σ + δ + µ)H ⇒ H ≥ H0 exp (− (σ + δ + µ) t) .

Thus, solutions S,D,C,H remain positive in the regionR.

2.3. Numerical Procedure

Equations (1 - 4) are solved using the Runge-Kutta scheme of the fourth order. The fourth order Runge-Kutta scheme for the autonomous
differential equations

Ẋ = F (X) , X (0) = X0

where 
X = (x1, x2, · · ·xn)T ,

Ẋ = (ẋ1, ẋ2, · · · ẋn)T ,

F (X) = (f1, f2, · · · , fn)T .

is given as

K4 = hF

(
Xn +

1

2

(
hF

(
Xn +

1

2

(
hF

(
Xn +

1

2
(hF (Xn))

)))))
, (24)

and
Xn+1 = Xn +

1

6
(K1 + 2K2 + 2K3 +K4) .

The choice of the fourth order Runge-Kutta Scheme is due to its
stability and large region of convergence (see [23] for other methods).
Absolute error tolerance is set to 10−8 and the numerical solutions
obtained are plotted as graphs to evaluate the trends as the parameter
values are varied. The parameter values are chosen according to the
studied of [24] on the Kenyan population as follows;

Λ = 3.3;α = 0.1; ρ = 0.2; ε = 0.41;µ = 1/65;β = 0.2;

σ = 0.1;ω = 0.1; γ = 0.1; δ = 0.3; η = 0.08.

The results are validated with the study of [24] and there is a great
agreement.

3. Analysis and Discussion of Results
Lifestyle can be transmitted from a diabetic patient to susceptible

individual due to interaction between diabetic patients and the
susceptible class. It is also important to note that not all interactions
lead to lifestyle transfer, hence β represents the proportion of such
interactions that lead to a transfer of lifestyle. Figures 2-5 show
the effect of β on the population. As β increases, most susceptible
individuals will acquire an unhealthy lifestyle from the diabetic
subpopulation due to interactions. For this reason, the susceptible
class declines as β increases (as seen in Figure 2). Hence, this
will cause a sudden rise in the diabetic class which will decline due
to a reduction in the susceptible (see Figure 3). The same pattern
obtained in the diabetic class is also obtained in the hospitalised and
the complicated classes (Figures 4 and 5).

Healthy lifestyles can also be transmitted among the individuals
within the susceptible class. The parameter ε represents the rate at
which people within the susceptible class embrace healthy lifestyle.
As ε changes from 0 to 1, the quality of the healthy lifestyle increases
from the least to the best quality of lifestyle. By increasing ε, the
quality of lifestyle gets better among the individuals in the susceptible
subpopulation. With this in place, the susceptible class continues to
rise (see Figure 6). Consequently, the number of people who migrate
into the diabetic class reduces, the complicated class reduces and the
hospitalised class reduces (see Figures 7-9).

As no cure has been found for diabetes yet, diabetes can only be
managed. Complications arising as a result of diabetes can be cured
but not the underlying diabetes. The parameter σ represents the rate at
which complicated cases are cured of their complications so that they
can return to the diabetic class. Hence, increasing σ means increasing
Progression from Hospitalised class back into the diabetic class. This
leads to a reduction in the hospitalised class (see Figure 11) but an
increase in the diabetic class (see Figure 10).

The per capita hospitalisation rate γ represents a constant
hospitalisation rate from the complicated class. By raising the values
of γ, the Complicated class begins to reduce (see figure 12) while
both the diabetic and hospitalised classes increase. If the constant
hospitalisation rate continues to increase, then the hospitals will
become congested and overloaded. Hence, a constant hospitalisation
rate is not a good way to control the complications in the diabetic
patients.
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Figure 2. Variation of the Susceptible class with Diabetic-Susceptible interactions.
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Figure 3. Variation of the Diabetic cases with Diabetic-Susceptible interactions.
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Figure 4. Variation of the Hospitalised cases with Diabetic-Susceptible interactions.
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Figure 5. Variation of the Complicated cases with Diabetic-Susceptible interactions.
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Figure 6. Variation of the Susceptible class with lifestyle impact.
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Figure 7. Variation of the Diabetic class with lifestyle impact.
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Figure 8. Variation of the Hospitalised class with lifestyle impact.
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Figure 9. Variation of the Complicated cases with lifestyle impact.
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Figure 10. Variation of the Diabetic class with recovery rate.
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Figure 11. Variation of the Hospitalised class with recovery rate.
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Figure 12. Variation of the Complicated cases with Hospitalisation rate.
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Figure 13. Variation of the Diabetic class with Hospitalisation rate.
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Figure 14. Variation of the Hospitalised class with Hospitalisation rate.

4. Conclusion
This study investigates the behaviour of the diabetic population,

taking into account the complicated diabetic cases with a constant
per capita hospitalization rate. A mathematical model is developed to
investigate the impact of the parameters on the diabetic populations.
The equilibrium points and the reproduction numbers are obtained.
The equilibrium points are shown to be locally stable if R0 < 1. The
model is shown to be well-possed, positive and bounded. The models
are numerically solved using the Runge-Kutta 4 technique, and the
results are graphed. The following results were obtained:

1. An increase in the unhealthy lifestyle leads to
a. a decrease in the susceptible class.
b. a sudden rise in the diabetic, the hospitalised and the

complicated classes and a decline over time.
2. An increase in the healthy lifestyle leads to an increase in

the susceptible class and a reduction in the diabetic, the
complicated and the hospitalised classes.

3. A constant per capita hospitalisation rate will lead to
overburdening of the health facility. Hence, resources at the
health facilities should not be left fixed for too long.
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