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Abstract: Geological data plays an indispensable role in mining coal safely and efficiently. Traditional rock core method not 

only have some defects of high labor intensity, high cost and slow speed, but also difficultly got the rock of the weak interlayer. 

Based on this, parameter-based identification method of the rock characteristics during the drilling operation is a hot research 

topic. In this paper, a comprehensive prediction model was established to predict the rock Uniaxial Compressive Strength (UCS). 

Besides, the prediction results of the comprehensive prediction method, multiple linear regression model, and Mechanical Specific 

Energy (MSE) model were compared. Furthermore, the K-means clustering method is used to classify the rock formation based 

on the measured drilling parameters. The result indicates that torque work is significantly correlated with the UCS of rock. The 

comprehensive method has the best prediction result, and the prediction error of rock's UCS is within 5MPa. The prediction 

results of rock classification are different from the actual results, but from the perspective of rock strength, this classification 

method is better. The rapid identification method of rock formation based on MWD provides a reference for the roadway support 

scheme and parameter design, and is an important part of the intelligent development of coal mines. 

Keywords: Measurement While Drilling, Parameters While Drilling, Rock Classification, Support Parameter,  

Uniaxial Compressive Strength 

 

1. Introduction 

Geological data plays an essential role in mining coal 

safely and efficiently. To obtain the accurate geological 

information on the roof, rich studies had been done. The 

commonly-used rock core method not only wasted time and 

money, but also difficultly got the rock of the weak interlayer. 

Tian, et al. [1] analyzed the rock breaking mechanism and the 

parameters acquisition method during the drilling process. 

However, the rock core method cannot meet the needs of 

coal-mining because the characteristic of the rock in the roof 

may change over time. To address the issue, video image 

technology was introduced to sample the image from the 

borehole by 3D laser and recognize the characteristics of 

rock rapidly [2]. Zhao [3] employed three-dimensional 

borehole resistivity imaging approach to detect the rock 

stratum of a goaf in coal mine. By compared with the rock 

core method, image-based method cannot obtain the strength 

information of the rocks. Based on this, parameter-based 

identification method of the rock characteristics during the 

drilling operation is still a hot research topic. 

To recognize the characteristics of the rocks according to 

the dynamic response of various parameters during the 

drilling process was of great significance [4]. Vardhan, et al 

[5, 6] discovered that the relationship between the measured 

pressure and the strength of rocks. Yasar [7] proved that the 

mechanical specific energy (MSE) exhibited a strong linear 

correlation with the unconfined compressive strength (UCS). 

Rodgers, et al [8] found that the ratio of torque to the drilling 

speed had a direct relationship with MSE. The models for 

evaluating MSE are shown in Table 1 [9-14]. 

Until now, many scholars had studied the classification 

methods of rock stratum based on various parameters that 
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obtained from the drilling operation. Liu, et al. [15] detected 

the formation of rock stratum in terms of the drilling and 

rotation pressure of bolters. Rostami, et al. [16] analyzed the 

vibration response of the drill bit passing through the rock 

fissure during the drilling. Liu, et al. [17] employed the finite 

element simulation to explore the relationship among energy 

response, the vibration of drilling pipe, penetration rate, and 

pressure. Furthermore, the coal-rock interface was identified 

by the combination of minimum enclosing balls classifier with 

support vector machines (SVM) in terms of the penetration 

rate and the vibration by Song, et al. [18] and Liu, et al. [19]. 

Kernel Fisher was also employed to classify the rock from coal 

with well logs [20]. However, the existing prediction models 

of rock strength were complex and the single classification 

method provided the limited accuracy for detecting the 

formation of rock stratum. To handle the drawback, a 

comprehensive approach that predicts UCS at first, and then 

classifies the rocks from coal by the combination of the 

silhouette coefficient and K-means clustering is proposed. 

Table 1. The models for MSE. 
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2. The Prediction Model of Uniaxial 

Compressive Strength 

Assuming that the UCS of a rock is predicted by multiple 

linear regression, the MSE method and the synthesis method 

based on the measured parameters during the drilling process. 

Multiple linear regression as a most commonly-used method 

in dependent variable prediction, can be summarized as: 

1 1 2 3 4R V N M Fλ λ λ λ ε= + + + +        (1) 

Where R1 denotes the predicted UCS. λ1, λ2, λ3, and λ4 

represent the coefficients of the model to be determined. ε is a 

constant term and F is the thrust; V is the penetration rate. M is 

the torque and N is the rotary speed. µ is the friction coefficient 

between the drill bit and the rock stratum and µ=0.21 [21]. 

Let WF, WM, and Wf represent the work done by the thrust, 

the torque, and the friction of the drill bit, respectively. The 

MSE has a direct relationship with the strength of the rock. 
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Then, the UCS of a rock, expressed by R2, is obtained. 

2R MSEλ ε= +                (6) 

Where r is the radius of the borehole and λ represents the 

coefficient of the model to be determined. Based on this, a 

comprehensive prediction model of UCS of rocks is proposed, 

with purpose of predicting UCS denoted as R3. 
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3. The Classification Method of Rock 

Formation 

The measured data that obtained from the sensors of 

displacement, penetration rate, pressure, torque and rotary 

speed during the drilling process form the input array, 

denoted as (t1, F1, M1, N1, V1), (t2, F2, M2, N2, V2),..., (tn, Fn, 

Mn, Nn, Vn). The corresponding UCS is predicted through the 

above three models. Assuming that the array corresponding 

to the i-th rock formation is [(ta, Ra), ( ta+1, Ra+1),..., (tb, Rb)]. 

The UCS of this rock formation is gotten as follows. 

1

1

b

ci i

i a

R R
b a =

=
− + ∑                 (8) 

It can be seen from Equation (8) that ta and tb represent 

the moment when the bit drills into and out of the i-th layer, 

respectively. In order to identify the rock strength accurately, 

it is necessary to automatically determine the thickness of 

each kind of rock based on the drilling parameters. The 

silhouette coefficients is employed to determine the optimal 

number of classifications for the sample data [(t1, R1), (t2, 

R2),..., (tb, Rb)]. The silhouette coefficient that is closer to 1 

means the better classification performance. This silhouette 

coefficient is calculated by Equation (9). 
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Where a(Ri) represents the average distance from sample 

Ri to other samples in the same cluster. b(Ri) denotes the 

average distance of Ri to all points in the nearest cluster. 

Following that, the sampling data are classified by K-means 

clustering method according to the optimal number of 

classifications. 

4. Case Verification 

4.1. Analysis of the Prediction Accuracy of Uniaxial 

Compressive Strength 

 

(a) Multi-functional rock drilling system. 

 

(b) Diagram of drill bit cutting edge. 

Figure 1. The drilling device [14]. 

The experimental data in the literature [14] is employed to 

verify the validity of the above-mentioned prediction model 

for UCS of rocks. The drilling device is shown in Figure 1. 

8 mortar specimens and 8 sandstone specimens that have 

different strength are labelled by J1-J28 and S1-S8, 

respectively. The experimental data is divided into two 

groups. The data listed in Table 1 is employed to train the 

coefficients of Equations (1), (6) and (7) by fitting analysis 

and the data shown in Table 2 is used to predict UCS of the 

rock through the models. 

Table 2. The experimental data [14]. 

Specimen types Number V (mm/min) N (r/min) M (N·m) F (kN) UCS (MPa) 

M5 

J1 148.46 50 18.92 0.02 1.90 

J2 177.89 100 14.43 0.01 2.00 

J3 185.07 100 12.98 0.01 1.94 

J4 174.69 100 13.99 0.01 1.99 

M7.5 

J5 124.8 50 17.01 0.03 2.37 

J6 87.94 100 7.30 0.02 2.58 

J7 105.70 100 6.19 0.03 3.29 

M10 

J9 81.52 50 17.05 0.03 6.70 

J10 103.09 100 12.22 0.02 7.20 

J11 112.75 100 10.13 0.03 6.24 

J12 130.77 100 14.67 0.03 6.99 

M15 

J13 83.85 50 28.77 2.79 10.23 

J14 83.95 100 16.42 2.66 10.05 

J15 132.05 100 22.34 2.15 10.54 

J16 118.08 100 21.44 2.07 10.60 

M20 

J17 83.91 50 45.43 2.23 23.54 

J18 83.65 100 29.89 2.33 30.81 

J19 111.42 100 35.88 3.01 22.43 

M25 

J21 83.46 50 43.66 3.44 21.66 

J22 84.23 100 26.15 1.20 27.80 

J23 137.82 100 38.30 3.16 22.22 

M30 

J25 84.64 50 41.49 0.85 27.71 

J26 82.88 100 25.99 0.51 35.21 

J27 137.84 100 31.36 1.49 22.73 

sandstone 

S1 79.97 50 103.08 5.59 58.09 

S3 84.07 150 40.69 2.65 59.95 

S5 84.90 250 28.00 2.15 61.91 

S6 84.41 300 23.78 2.05 60.88 

S7 110.72 100 65.20 5.48 51.41 

S8 136.47 100 73.96 6.10 49.80 
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Table 3. The experimental data for verifying the UCS [14]. 

S Specimen types Specimen number V (mm/min) N (r/min) M (N·m) F (kN) UCS (MPa) 

M7.5 J8 138.95 100 8.38 0.05 3.22 

M20 J20 137.76 100 43.29 3.51 24.92 

M25 J24 112.42 100 34.25 2.41 22.05 

M30 J28 114.25 100 30.32 0.94 28.56 

sandstone S2 82.21 100 53.10 2.72 62.60 

sandstone S4 84.09 200 32.28 1.95 60.01 

 

From the experimental data in Table 1, the UCS prediction 

models based on multiple regression, MSE model and 

comprehensive prediction method are constructed as follows. 
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It can be seen from the predicted UCS shown in Figure 2 

that the multiple linear regression model has the largest 

prediction error, and the comprehensive method has the best 

prediction result. 

 

Figure 2. The prediction results of UCS. 

4.2. Analysis of the Classification Performance of the Rock 

in a Roof 

It is assumed that 36 experimental data of J1~S8 are 

collected during the drilling process and the predicted UCS 

are obtained by the comprehensive method. After 

determining the most appropriate number of classification by 

the silhouette coefficients, these specimens are classified 

through K-means clustering method. The silhouette 

coefficients shown in Figure 3 indicate that the classification 

performance is best as the number of the clusters are 4. 

 

Figure 3. The silhouette coefficients under different numbers of 

classification. 

We see from the classification results shown in Figure 4 

that the UCS of four kinds of rocks are mainly concentrated 

in 0~5MPa, 5~11MPa, 20~30MPa and 50~60MPa, which is 

consistent with the actual test piece strength. According to 

the Equation (7), the UCS of these rocks are 3.35 MPa, 8.97 

MPa, 24.34 MPa, and 58.76 MPa, respectively. 

 

Figure 4. The classification result. Each color represents a rock. 

5. Discussion 

According to the stepwise regression analysis by 

MATLAB, we see that WM has the strong correlation with 

UCS of the rock shown in Figure 5. That means the rock is 
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destroyed during the drilling process caused by the rotation 

of a bit. Hence, the UCS of rocks is greater than the shear 

and tensile strength. Apparently, the rotation mainly destroys 

the rock through the combined action of shearing and tension. 

For different strength of rock formations, to optimize the 

torque and thrust distribution ratio is an important research 

direction to improve the drilling efficiency. 

 

Figure 5. The relationship between UCS and WM. 

The MSE has a significant correlation with UCS, and this 

conclusion has been verified by many scholars [9]. 

Compared with the traditional MSE model, the impact of 

drill reaming is considered in this paper. In addition, The 

comprehensive method proposed in this paper does not 

consider the geometry of the drill bit, while the model (DP-

UCS model) takes into account the geometry (Wang, et al. 

[14]). Therefore, the comprehensive prediction results are 

more accurate than the DP-UCS model, which shows that the 

geometry of the bit can be simplified in some cases. However, 

the enlargement of the diameter of the borehole and the 

friction between the side of the drill bit and the borehole wall 

are not considered in the paper, causing the prediction error. 

Intelligent identification of rock formation, the trend of 

intelligent development, is of great significance to tunnel 

engineering, underground engineering, and mining 

engineering. In particular, to optimize the support parameters 

based on the MWD can better control the deformation of the 

surrounding rock in a roadway. Field experimental data 

acquisition for accurate identification of rock fissures will be 

the future research direction. 

6. Conclusions 

In this research work, it is found that the torque work has a 

high correlation with the rock strength. For different strength 

of rock formations, the optimization of the torque and thrust 

distribution ratio is an important research direction to 

improve the drilling efficiency. Next, the prediction result of 

the multiple linear regression model has the largest deviation, 

and the comprehensive method has the best prediction result. 

The experimental results show that the geometry of the drill 

bit can be ignored when using a comprehensive method. 

Furthermore, based on the penetration rate, rotating speed, 

torque and thrust, the rock classification can be recognized 

by the silhouette coefficient and K-means clustering. 
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