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Abstract: Although a significant number of studies have been devoted to the investigation of the electrographic correlates and 

neurophysiological mechanisms of voluntary movement and motor imagery-related brain activity, there is a question on which 

EEG characteristics reflect its content. Considering that motor imagery is a complex cognitive process which requires coordinated 

activity of a number of cortical structures of the hemispheres, the EEG dimension reduction problems were studied. The values 

were recorded from 14 channels in eight subjects in the task of voluntary movement execution and motor imagery activity. The 

principal component analysis has shown that the orthogonal transformation of the EEG channels has formed of 3 components, 

sufficient to describe a multidimensional brain pattern. The description of invariant EEG patterns of voluntary movements and 

motor imagery can be performed on the basis of a compressed set of features of the covariance matrix. It has been shown that 

frontal and central areas as critical brain structures controlling behaviour predominantly participated in the performance of 

movement execution. Whereas under conditions of motor imagery-related brain activity, the loci remaining in the primary motor 

cortex were additionally formed in the parieto-occipital associative regions of the brain, with a partial dominance of the right 

hemisphere. The eigenvectors of target spatio-temporal EEG patterns associated with the movements execution and motor 

imagery can be used as markers for classification in the BCIs. 
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1. Introduction 

The creation of systems known today as the Brain-

computer interfaces (BCIs) is one of the most rapidly 

developing areas of research, providing the possibility of 

communication of completely paralyzed patients with the 

outside world [1, 2]. Moreover, a number of authors consider 

this technology as a fundamentally new language and a 

channel of human interaction with the external environment 

through brain signals [3, 4]. 

The key element in implementing BCIs technology is the 

efficiency of setting in the stimulus-independent neural 

interface circuit, including methods and algorithms for the 

detecting of invariant EEG patterns [5, 6]. Along with 

numerous electrographic phenomena, for these purposes, 

cortical potentials are currently used during the 

implementation by the person of voluntary movement or their 

imagined equivalents [7, 3]. At the same time, the EEG 

classifier and methods of predicting and extracting features 

ensure the functioning of the neural interface from the point 

of view of recognition of control commands [8, 9]. In 

addition, the extraction of distinguishable features of EEG 

through methods of processing of the brain signals should 

ensure dynamic adaptability to the characteristics of quasi-

stationary signals [7]. 

On the other hand, it has been shown that the effectiveness 

of BCI systems based on the EEG depends on a number of 

factors, the most important of which are the individual 

characteristics of the user and his current functional state [10]. 

The detection of EEG patterns associated with voluntary 

motor execution or motor imagery activity is also 

complicated by the presence of various types of artefacts in 

the recordings [9]. These factors, therefore, induce the search 

for ways to reduce data redundancy, reduce the dimension of 

the signal without loss and distortion of useful information to 

create effective BCI systems that demonstrate high accuracy 
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and speed of voluntary control. The development of new 

methods of analysis and interpretation of brain signals can 

directly affect the reliability of the functioning of such a non-

verbal and non-muscular control channel, as well as the 

efficiency of the classification of patterns of bioelectrical 

brain activity, providing the overall stability of the system 

[11, 12]. These conditions, as before, are decisive for 

accelerating the spread of neural control technology not only 

for research purposes, but also in the mass consumer market 

for solving problems of monitoring the functional state of a 

person, as well as forming a new non-muscle channel for 

controlling of various devices [13-16]. 

The goal of this study was to reduce multidimensional 

EEG and minimize the description of the target EEG features 

associated with voluntary movement execution and motor 

imagery activity by a combination of the Principal 

Component Analysis (PCA) method for the subsequent 

classification of the eigenvectors of the covariance matrix 

using the Linear Discriminant Analysis (LDA) method. 

2. Materials and Methods 

2.1. Participants 

The study involved 8 people (4 men and 4 women), whose 

average age was 26±2 years. All of them had no experience 

of psychophysiological examinations, they were right-handed 

and had no health abnormalities. The study was conducted in 

accordance with the requirements of the SFedU Bioethics 

Commission, developed on the basis of the Declaration of 

Helsinki. All of them confirmed in writing their voluntary 

participation consent and were adapted to the conditions of 

the study. 

2.2. Experimental Procedure 

During the experiments, the participants were in a 

comfortable position (in a chair), in a light and soundproof 

Faraday chamber. Each of them participated in a training 

procedure and two test examinations. During the trainings, the 

subjects were asked to voluntarily perform a movement 

execution (raising the forearm in a vertical plane with the elbow 

joint resting on the armrest of the chair) with the right or left 

hand with an interval of 6-10 sec in any sequence but with the 

condition that after the movement execution their mental (motor 

imagery) repetition will be performed. After completing this 

complex, the subject was to signal the end of work by pressing a 

button. In the process of training, there was an adaptation to the 

conditions of the examination, an individual rate of movement 

performance was formed. At the same time, the individual speed 

characteristics of the subjects were determined. The training was 

carried out without EEG registration. 

During the test examinations with the EEG recording, all 

participants first performed at least 30 real movement 

executions of the left or right hand in any sequence and at a 

voluntary pace with an interval of 6 and no more than 10 

seconds between successive movements (series M). Then the 

subjects were asked to follow each real movement a similar 

motor imagery equivalent for 2 seconds (series M + MI). The 

signal of the end of motor imagery repetition was not 

required. In total, over 70 cycles (M + MI) were performed 

with both the left and right hand. 

2.3. EEG Recording 

The source of data for the analysis was artifact-free EEG 

segments recorded from 14 standard channels according to 

the international system "10-20", namely: f7, f8, f3, f4, c3, c4, 

p3, p4, o1, o2, t3, t4, t5, t6. EEG recording was carried out 

monopolar with referents located on the earlobes. 

Additionally, an electromyogram (EMG) was recorded of the 

superficial muscles of both arms, flexing the forearm at the 

elbow joint (m. Brachioradialis), and an electrooculogram 

(horizontal and vertical, EOG) to remove artefacts associated 

with eye movement and blinking. The sampling rate of the 

signal for each of the recording channels was 250 Hz. EEG 

signals were preprocessed with a 1-70 Hz bandpass filter and 

a 50 Hz notch filter. All registrations were carried out using 

the Encephalan biopotential amplifier (Medikom-MTD, 

Russia). Statistical analysis was carried out using the 

Statistica 12 software package. 

2.4. EEG Analysis 

Principal component analysis (PCA) was used to orthogonal 

transformation of a set of observations of potentially correlated 

variables (EEG channels) into a set of values (covariance 

matrix) of linearly uncorrelated variables called principal 

components. The number of principal components is usually 

less than or equal to the number of the original variables, and 

the principal components are independent only if the dataset is 

normally distributed. The transformation is performed in such 

a way that the first principal component has the maximum 

possible deviation, i.e., considers as much of the variability in 

the data as possible. Each next component, in turn, has the 

highest variance and orthogonal (i.e., not correlated) with the 

preceding components. 

The calculation of the covariance matrix was carried out 

according to: 

� = ��� × �� = ��� ∗ �∗� =
	



 ∑ � ∗ �∗


,�   

where: 

C – covariance matrix. 

Е – expected values. 

В – deviations from the mean in each row m of the data 

matrix. 

× – output values. 

*– conjugate transposition. 

N – is the number of columns in the dataset. 

Canonical discriminant analysis or Fisher's linear 

discriminant was used as a linear classifier to separate more 

than two classes (from 3 to 5) of rest and movement-relate 

brain potentials based on the analysis of the eigenvalues of 

the covariance matrix. In the case when there are more than 

two classes, the analysis in calculating the discriminant 

functions can be extended in order to find subspaces, i.e., to 
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separate all available classes while maintaining the lowest 

possible variance within the subspaces. The classical method 

for finding the best data discrimination is to find a canonical 

discriminant function d that can maximize the ratio of 

between-group variation to within-group variation: 

� = ����/����,  

where: 

B - intergroup, W - intragroup scattering matrices of the 

observed variables from the mean. 

To determine the time windows for analysis and classification, 

we used the procedure of superposition and inverse averaging of 

signals relative to the marks of initiation of actual movement 

execution. The marks were installed offline after filtering 

additional myographic (EMG) channels with a bandpass filter 

(0.1-4 Hz) with a conditional threshold of 10 µV, corresponding 

to the onset of actual movement. For the analysis, we selected 

EEG epochs associated with the performance of movement 

preparation (MP) and motor imagery (MI) in two time windows: 

-500 ÷ -150 ms before the execution of a actual movement and 

+2500 ÷ +4500 ms during its mental repetition. 

Determining the time spent on performing a motor 

imagery within the framework of the training procedure was 

reduced to measuring the interval between actual movement 

execution and pressing a button corresponding to the end of 

the motor imagery task. This interval was averaged 2550 ms 

(St_Dv -119.254; +119.256). Taking into account the 

phenomenon of β-synchronization (post-movement beta 

rebound (PMBR)), the duration of which, according to a 

number of authors [17], is up to 500 ms, as well as the time 

for the formation of a motor response (no more than 300 ms), 

the time spent on performing a motor imagery task was about 

1750 ms. (St_Dv -119; +119). Additionally, correlation 

coefficients (CC) were calculated between the EEG and 

EMG signals (for the right and left hand) to exclude the 

influence of muscle artefacts. The analysis showed that the 

CC value did not exceed±0.16. 

3. Results and Discussion 

The analysis of the EEG spectral characteristics of the 

subjects recorded at rest with eyes open and closed before 

and after work showed that there were no significant 

differences between them in the frequency range from 1 to 70 

Hz. This fact indicates the absence of any significant changes 

in the functional state of the central nervous system of the 

subjects during the experiment. 

The principal component analysis (PCA) has shown that the 

orthogonal transformation of the original dataset leads to the 

formation of a limited number of components sufficient to 

describe a multidimensional EEG. PCA results are usually 

discussed in terms of the significance and sensitivity of the 

components (sometimes called factors) and the load (the weight 

of each standardized input variable to obtain a component score). 

As a result of the analysis, 4 main components were identified, 2 

of which accounted for more than half of the load (up to 60%) of 

significant eigenvectors (Figure 1). 

 

Figure 1. Graphical representation of the results of the PCA of the main components: A - mean and standard deviation of each component; B - component 

weights; C is the distribution of eigenvectors. 

The first main component accumulated most of the RX 

variability in the data (i.e., all the maximum deviations in the 

values of the initial variables – EEG channels), which, 

apparently, is associated with fluctuations of brain states that are 

non-specific in relation to the actual movement execution or 

motor imagery activity being realized. Each next component had 

the maximum variance that orthogonal to the previous 

component. At the same time, of the 4 identified components, 

only the first three were significant (Table 1, Figure 2). 

The second component (factor) turned out to be the most 

sensitive to intrahemispheric differences in the 

implementation of both movement execution and motor 

imagery. It reflected the presence of a connection between 

the working hand and the corresponding contralateral 

hemisphere of the brain (Figure 2.A, 2.B). The third 

component, with the lowest load among the significant 

factors (around 7%), was more sensitive to interhemispheric 

interactions in symmetrical brain regions and had no 

significant connections with the movement activity 

performed (Figure 2.A). 
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Figure 2. Graphical representation of the results of PCA decomposition of the original EEG signal into components 1, 2 and 3. 

Legend: A - component / factor # 2; B - component composition / sensitivity of factors 1 and 2. LH - left hand, RH - right hand, Rest (R) – rest with eye open, 

MILH – motor imagery left hand, MIRH - motor imagery right hand. 

Table 1. The result of the analysis of the main components for 5 classes of events (actual movement, motor imagery and rest). 

Principal Components Analysis Summary. Number of components is 4. 

74,9868% of Sum of squares has been explained by all the extracted components. 

Com. RX Eigenval Q Limit Q_Cum Sign. Iterations 

1 0,422177 8,021364 0,361650 0,052958 0,361650 S 8 

2 0,189669 3,603710 0,250090 0,055881 0,521294 S 7 

3 0,071240 1,353564 0,014406 0,059148 0,528191 S 50 

4 0,066782 1,268854 -0,08814 0,062824 0,486602 NS 50 

 

The structure of the first component largely met the 

requirements for stochastic (random) processes. It had a 

certain optimal amplitude, at which it manifested itself most 

strongly in comparison with the others principal components, 

and the signal also remained constant during the entire 

observation interval. The magnitude of the load of the first 

component significantly exceeded that of the second (on 

average, 2.22 times). Therefore, in the initial dataset, the 

changes in the EEG, which were non-specific in relation to 

the controlled activity, were as many times greater than the 

informative signal. 

The discriminant analysis of the eigenvectors showed a 

significant increase in the accuracy of the classification of 

observations under conditions of decreasing data redundancy for 

the 3rd and 5th classes of classes. So, the application of the 

Fisher discriminant after the discovery of unique eigenvectors of 

movement execution and motor imagery made it possible with a 

high probability, approaching 92.8% (in some cases with an 

Error of 0.01), to find a subspace (0 is the root of the 

discriminant function) related to the idling state of the brain - 

rest (Table 2., Figure 3.C). In addition, roots (1 and 2) of 

discriminant functions (Table 2) were found, separating events 

associated with movement and motor imagery, as well as the left 

and right hands with a probability of up to 96% (Figure 3.B, C) 

that was not at all obvious in terms of determining the 

discriminant functions of the original data (Figure 3.A). 

The greatest contribution to the classification of 5 classes, 

including the rest, movement execution and motor imagery 
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was made by channels f3, f4, c3, c4, p4, with an R.Sqr 

coefficient of at least 0.95, as well as channels p3, t3, t4, t5, 

t6, o1, o2, at 0.8<R.Sqr<0.95. Significant channels for linear 

discrimination of 3 classes (motor imagery and rest) were c3, 

c4, p4, t5, t6, o2, t4 with R.Sqr>0.95, and f3, f4, p3, o1 with 

0.8<R.Sqr<0.95. 

Table 2. The roots of discrminant functions applied to the covariance matrix of eigenvectors. 

№ Eigenvalue Canon-R Wilks'Lam C_Sqr. Df p 

0 24,265 0,980 0,016 11947 56 0,000 

1 0,868 0,681 0,404 2616 39 0,000 

2 0,318 0,491 0,755 810 24 0,000 

3 0,004 0,065 0,995 12 11 0,339 

 

Figure 3. The result of discrimination of the 5th and 3rd classes and the determination of the posterior probabilities of the covariance matrix for a group of 8 

subjects. 

A - the result of discriminant analysis of the raw EEG; B - posterior probabilities of the classifying function; C - is the result of applying Fisher's discriminant 

to the covariance matrix after Principal component analysis (PCA). Classes: LH, RH, Rest, MILH, MIRH (see Figure 2). 

It has been experimentally demonstrated that the spatial 

pattern distribution in the subjects in some cases was 

different in the process of movement and motor imagery-

related brain activity [18, 19]. The frontal and central areas as 

critical brain structures for controlling voluntary behaviour 

predominantly participated in the movement execution, while 

under conditions of motor imagery brain activity, the target 

loci remaining in the primary motor cortex (M1) were 

additionally formed in the posterior parietal (associative) 

brain regions in a dominant left hemisphere [20]. On the one 

hand, Kai J. Miller and his colleagues experimentally 

demonstrated that the spatial distribution of the motor 

imagery-related neuronal population activity mimics the 

spatial distribution of actual motor movement. It turned out 

that the role of primary motor areas in the motor imagery is 

relatively large in the conditions of electrocortical stimulation 

with image-induced surface activity of the cerebral cortex. At 

the same time, the magnitude of imaging-induced cortical 

activity change was �25% of the magnitude associated with 

the actual movement. Moreover, as the training and 

development of the control skill in the neural interface circuit 

in a simple feedback task, the changes in the motor imagery-

related brain activity significantly increased, in some cases 

exceeding that with movement execution [24]. On the other 

hand, there is no unambiguous opinion in the literature how 

much the brain potentials recorded in the conditions of 

movement execution and motor imagery differ, and, in 

particular, there are indications [21-23] for their absence. The 

existing uncertainty prompts further investigation of this 

problem area. 

Despite this, neurophysiology is steadily approaching the 

understanding of how motor (motor) and cognitive 

information is processed by populations of neurons and the 

brain as a whole [20, 25]. Based on the available 

experimental facts, well-known principles of frequency, 

temporal and population coding have been developed [26-28], 

however, exhaustive knowledge of the relevant mechanisms 

may not be required to create neural control systems. It may 

be sufficient to identify a correlation between neuronal 

activity and, for example, a person's intention to implement a 

corresponding movement or transition change in the 

functional state of the brain. Nevertheless, the request for the 

development and practical use of such systems significantly 

stimulated, for example, interest in understanding the nature 
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of spontaneous and evoked electrical brain activity, 

adaptation mechanisms, mechanisms of perception and 

memory. 

Finally, the widespread use of methods for analyzing and 

interpreting brain signals of an electroencephalogram (EEG) 

directly affects the reliability of the functioning of such a 

new brain-controlled channel, as well as the effectiveness of 

classifying patterns of electrical activity of the brain, 

ensuring the overall stability of the system [29]. These 

factors are still crucial for accelerating the spread of neural 

control technology, not only for research purposes, but also 

in the mass consumer market. BCI systems can be useful in 

solving problems of monitoring the functional state of a 

person, as well as the formation of a new non-muscular, 

auxiliary channel for controlling devices for various purposes. 

4. Conclusions 

Thus, it is shown that: 

1. A complex and multidimensional EEG signal is 

successfully decomposed into independent components 

to improve the accuracy of developed classifying 

algorithms. The possibility of describing invariant EEG 

patterns of movement execution and motor imagery 

with a minimal set of feature spaces based on the 

analysis of the covariance matrix of vectors is also 

revealed. 

2. There are significant differences between EEG 

phenomena that are formed in preparation to an actual 

movement and its motor imagery reproduction. 

3. Eigenvectors of spatio-temporal EEG patterns 

associated with the movement execution and motor 

imagery-related brain activity can be used as markers 

for classification tasks, including in the framework of 

the neural network-based BCI approach. 
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